Spark MapOutputTracker源码分析
更多资源分享
- SPARK 源码分析技术分享(视频汇总套装视频): https://www.bilibili.com/video/av37442139/
- github: https://github.com/opensourceteams/spark-scala-maven
- csdn(汇总视频在线看): https://blog.csdn.net/thinktothings/article/details/84726769
前置条件
- Hadoop版本: Hadoop 2.6.0-cdh5.15.0
- Spark版本: SPARK 1.6.0-cdh5.15.0
- JDK.1.8.0_191
- scala2.10.7
技能标签
- Spark ShuffleMapTask处理完成后,把MapStatus数据(BlockManagerId,[compressSize])发送给MapOutputTrackerMaster.mapStatuses保存
- ResultTask对ShuffleMapTask输出结果迭代ShuffleBlockFetcherIterator需要用到MapStatus
ShuffleMapTask
MapStatus
- MapStatus 数据(BlockManagerId,[compressSize])
ShuffleRDD.compute()
- 调用BlockStoreShuffleReader.read()方法
override def compute(split: Partition, context: TaskContext): Iterator[(K, C)] = {
val dep = dependencies.head.asInstanceOf[ShuffleDependency[K, V, C]]
SparkEnv.get.shuffleManager.getReader(dep.shuffleHandle, split.index, split.index + 1, context)
.read()
.asInstanceOf[Iterator[(K, C)]]
}
BlockStoreShuffleReader.read
- 调用 mapOutputTracker.getMapSizesByExecutorId
override def read(): Iterator[Product2[K, C]] = {
val streamWrapper: (BlockId, InputStream) => InputStream = { (blockId, in) =>
blockManager.wrapForCompression(blockId,
CryptoStreamUtils.wrapForEncryption(in, blockManager.conf))
}
val wrappedStreams = new ShuffleBlockFetcherIterator(
context,
blockManager.shuffleClient,
blockManager,
mapOutputTracker.getMapSizesByExecutorId(handle.shuffleId, startPartition, endPartition),
streamWrapper,
// Note: we use getSizeAsMb when no suffix is provided for backwards compatibility
SparkEnv.get.conf.getSizeAsMb("spark.reducer.maxSizeInFlight", "48m") * 1024 * 1024,
SparkEnv.get.conf.getBoolean("spark.shuffle.detectCorrupt", true))
val ser = Serializer.getSerializer(dep.serializer)
val serializerInstance = ser.newInstance()
// Create a key/value iterator for each stream
val recordIter = wrappedStreams.flatMap { case (blockId, wrappedStream) =>
// Note: the asKeyValueIterator below wraps a key/value iterator inside of a
// NextIterator. The NextIterator makes sure that close() is called on the
// underlying InputStream when all records have been read.
serializerInstance.deserializeStream(wrappedStream).asKeyValueIterator
}
// Update the context task metrics for each record read.
val readMetrics = context.taskMetrics.createShuffleReadMetricsForDependency()
val metricIter = CompletionIterator[(Any, Any), Iterator[(Any, Any)]](
recordIter.map(record => {
readMetrics.incRecordsRead(1)
record
}),
context.taskMetrics().updateShuffleReadMetrics())
// An interruptible iterator must be used here in order to support task cancellation
val interruptibleIter = new InterruptibleIterator[(Any, Any)](context, metricIter)
val aggregatedIter: Iterator[Product2[K, C]] = if (dep.aggregator.isDefined) {
if (dep.mapSideCombine) {
// We are reading values that are already combined
val combinedKeyValuesIterator = interruptibleIter.asInstanceOf[Iterator[(K, C)]]
dep.aggregator.get.combineCombinersByKey(combinedKeyValuesIterator, context)
} else {
// We don't know the value type, but also don't care -- the dependency *should*
// have made sure its compatible w/ this aggregator, which will convert the value
// type to the combined type C
val keyValuesIterator = interruptibleIter.asInstanceOf[Iterator[(K, Nothing)]]
dep.aggregator.get.combineValuesByKey(keyValuesIterator, context)
}
} else {
require(!dep.mapSideCombine, "Map-side combine without Aggregator specified!")
interruptibleIter.asInstanceOf[Iterator[Product2[K, C]]]
}
// Sort the output if there is a sort ordering defined.
dep.keyOrdering match {
case Some(keyOrd: Ordering[K]) =>
// Create an ExternalSorter to sort the data. Note that if spark.shuffle.spill is disabled,
// the ExternalSorter won't spill to disk.
val sorter =
new ExternalSorter[K, C, C](context, ordering = Some(keyOrd), serializer = Some(ser))
sorter.insertAll(aggregatedIter)
context.taskMetrics().incMemoryBytesSpilled(sorter.memoryBytesSpilled)
context.taskMetrics().incDiskBytesSpilled(sorter.diskBytesSpilled)
context.internalMetricsToAccumulators(
InternalAccumulator.PEAK_EXECUTION_MEMORY).add(sorter.peakMemoryUsedBytes)
CompletionIterator[Product2[K, C], Iterator[Product2[K, C]]](sorter.iterator, sorter.stop())
case None =>
aggregatedIter
}
}
MapOutputTracker.getMapSizesByExecutorId
- 调用 MapOutputTracker.getStatuses()方法
/**
* Called from executors to get the server URIs and output sizes for each shuffle block that
* needs to be read from a given range of map output partitions (startPartition is included but
* endPartition is excluded from the range).
*
* @return A sequence of 2-item tuples, where the first item in the tuple is a BlockManagerId,
* and the second item is a sequence of (shuffle block id, shuffle block size) tuples
* describing the shuffle blocks that are stored at that block manager.
*/
def getMapSizesByExecutorId(shuffleId: Int, startPartition: Int, endPartition: Int)
: Seq[(BlockManagerId, Seq[(BlockId, Long)])] = {
logDebug(s"Fetching outputs for shuffle $shuffleId, partitions $startPartition-$endPartition")
val statuses = getStatuses(shuffleId)
// Synchronize on the returned array because, on the driver, it gets mutated in place
statuses.synchronized {
return MapOutputTracker.convertMapStatuses(shuffleId, startPartition, endPartition, statuses)
}
}
MapOutputTracker.getStatuses()
- 发送消息 askTrackerArray[Byte]
- 消息通过Outbox和Inbox进行发送和收取,最后调用MapOutputTracker.receiveAndReply处理消息
- 接收消息 : MapOutputTracker.receiveAndReply
/**
* Get or fetch the array of MapStatuses for a given shuffle ID. NOTE: clients MUST synchronize
* on this array when reading it, because on the driver, we may be changing it in place.
*
* (It would be nice to remove this restriction in the future.)
*/
private def getStatuses(shuffleId: Int): Array[MapStatus] = {
val statuses = mapStatuses.get(shuffleId).orNull
if (statuses == null) {
logInfo("Don't have map outputs for shuffle " + shuffleId + ", fetching them")
val startTime = System.currentTimeMillis
var fetchedStatuses: Array[MapStatus] = null
fetching.synchronized {
// Someone else is fetching it; wait for them to be done
while (fetching.contains(shuffleId)) {
try {
fetching.wait()
} catch {
case e: InterruptedException =>
}
}
// Either while we waited the fetch happened successfully, or
// someone fetched it in between the get and the fetching.synchronized.
fetchedStatuses = mapStatuses.get(shuffleId).orNull
if (fetchedStatuses == null) {
// We have to do the fetch, get others to wait for us.
fetching += shuffleId
}
}
if (fetchedStatuses == null) {
// We won the race to fetch the statuses; do so
logInfo("Doing the fetch; tracker endpoint = " + trackerEndpoint)
// This try-finally prevents hangs due to timeouts:
try {
val fetchedBytes = askTracker[Array[Byte]](GetMapOutputStatuses(shuffleId))
fetchedStatuses = MapOutputTracker.deserializeMapStatuses(fetchedBytes)
logInfo("Got the output locations")
mapStatuses.put(shuffleId, fetchedStatuses)
} finally {
fetching.synchronized {
fetching -= shuffleId
fetching.notifyAll()
}
}
}
logDebug(s"Fetching map output statuses for shuffle $shuffleId took " +
s"${System.currentTimeMillis - startTime} ms")
if (fetchedStatuses != null) {
return fetchedStatuses
} else {
logError("Missing all output locations for shuffle " + shuffleId)
throw new MetadataFetchFailedException(
shuffleId, -1, "Missing all output locations for shuffle " + shuffleId)
}
} else {
return statuses
}
}
MapOutputTracker.receiveAndReply
- 调用方法tracker.post(new GetMapOutputMessage(shuffleId, context))
override def receiveAndReply(context: RpcCallContext): PartialFunction[Any, Unit] = {
case GetMapOutputStatuses(shuffleId: Int) =>
val hostPort = context.senderAddress.hostPort
logInfo("Asked to send map output locations for shuffle " + shuffleId + " to " + hostPort)
val mapOutputStatuses = tracker.post(new GetMapOutputMessage(shuffleId, context))
case StopMapOutputTracker =>
logInfo("MapOutputTrackerMasterEndpoint stopped!")
context.reply(true)
stop()
}
MapOutputTrackerMaster.post
// requests for map output statuses
private val mapOutputRequests = new LinkedBlockingQueue[GetMapOutputMessage]
def post(message: GetMapOutputMessage): Unit = {
mapOutputRequests.offer(message)
}
- MapOutputTrackerMaster.MessageLoop
- 循环处理阻塞队列中的消息mapOutputRequests
- 调用方法 MapOutputTrackerMaster.getSerializedMapOutputStatuses()得到
/** Message loop used for dispatching messages. */
private class MessageLoop extends Runnable {
override def run(): Unit = {
try {
while (true) {
try {
val data = mapOutputRequests.take()
if (data == PoisonPill) {
// Put PoisonPill back so that other MessageLoops can see it.
mapOutputRequests.offer(PoisonPill)
return
}
val context = data.context
val shuffleId = data.shuffleId
val hostPort = context.senderAddress.hostPort
logDebug("Handling request to send map output locations for shuffle " + shuffleId +
" to " + hostPort)
val mapOutputStatuses = getSerializedMapOutputStatuses(shuffleId)
context.reply(mapOutputStatuses)
} catch {
case NonFatal(e) => logError(e.getMessage, e)
}
}
} catch {
case ie: InterruptedException => // exit
}
}
}
- MapOutputTrackerMaster.getSerializedMapOutputStatuses
- 调用 MapOutputTrackerMaster.getSerializedMapOutputStatuses
- 反向推变量mapStatuses在哪里被调用,赋值
def getSerializedMapOutputStatuses(shuffleId: Int): Array[Byte] = {
var statuses: Array[MapStatus] = null
var retBytes: Array[Byte] = null
var epochGotten: Long = -1
// Check to see if we have a cached version, returns true if it does
// and has side effect of setting retBytes. If not returns false
// with side effect of setting statuses
def checkCachedStatuses(): Boolean = {
epochLock.synchronized {
if (epoch > cacheEpoch) {
cachedSerializedStatuses.clear()
clearCachedBroadcast()
cacheEpoch = epoch
}
cachedSerializedStatuses.get(shuffleId) match {
case Some(bytes) =>
retBytes = bytes
true
case None =>
logDebug("cached status not found for : " + shuffleId)
//此时的mapStatuses中已有值,存储的是(shuffleId,[{BlockManagerId,[compressSize]}])
statuses = mapStatuses.getOrElse(shuffleId, Array[MapStatus]())
epochGotten = epoch
false
}
}
}
if (checkCachedStatuses()) return retBytes
var shuffleIdLock = shuffleIdLocks.get(shuffleId)
if (null == shuffleIdLock) {
val newLock = new Object()
// in general, this condition should be false - but good to be paranoid
val prevLock = shuffleIdLocks.putIfAbsent(shuffleId, newLock)
shuffleIdLock = if (null != prevLock) prevLock else newLock
}
// synchronize so we only serialize/broadcast it once since multiple threads call
// in parallel
shuffleIdLock.synchronized {
// double check to make sure someone else didn't serialize and cache the same
// mapstatus while we were waiting on the synchronize
if (checkCachedStatuses()) return retBytes
// If we got here, we failed to find the serialized locations in the cache, so we pulled
// out a snapshot of the locations as "statuses"; let's serialize and return that
val (bytes, bcast) = MapOutputTracker.serializeMapStatuses(statuses, broadcastManager,
isLocal, minSizeForBroadcast)
logInfo("Size of output statuses for shuffle %d is %d bytes".format(shuffleId, bytes.length))
// Add them into the table only if the epoch hasn't changed while we were working
epochLock.synchronized {
if (epoch == epochGotten) {
cachedSerializedStatuses(shuffleId) = bytes
if (null != bcast) cachedSerializedBroadcast(shuffleId) = bcast
} else {
logInfo("Epoch changed, not caching!")
removeBroadcast(bcast)
}
}
bytes
}
}
反向推mapStatuses
- MapOutputTrackerMaster里的变量mapStatuses在哪里被调用
- MapOutputTrackerMaster.registerMapOutputs
- 被DAGScheduler.handleTaskCompletion()方法调用
protected val mapStatuses = new TimeStampedHashMap[Int, Array[MapStatus]]()
/** Register multiple map output information for the given shuffle */
def registerMapOutputs(shuffleId: Int, statuses: Array[MapStatus], changeEpoch: Boolean = false) {
mapStatuses.put(shuffleId, Array[MapStatus]() ++ statuses)
if (changeEpoch) {
incrementEpoch()
}
}
DAGScheduler.handleTaskCompletion()
- ShuffleMapTask任务完成后匹配该项
- shuffleStage.addOutputLoc(smt.partitionId, status)得到ShuffleMapTask的返回值
- val status = event.result.asInstanceOf[MapStatus]
- ShuffleMapTask完成时返回MapStage: (BlockManagerId,[compressSize])
- DAGScheduler.handleTaskCompletion()被调用DAGScheduler.doOnReceive()方法中的消息类型匹配: completion @ CompletionEvent
- completion @ CompletionEvent被发出: DAGScheduler.taskEnded
- DAGScheduler.taskEnded被调用 TaskSetManager.handleSuccessfulTask()
- TaskSetManager.handleSuccessfulTask()被调用:TaskSchedulerImpl.handleSuccessfulTask()
- TaskSchedulerImpl.handleSuccessfulTask()被调用:TaskResultGetter.enqueueSuccessfulTask
- TaskResultGetter.enqueueSuccessfulTask被调用: TaskSchedulerImpl.statusUpdate()方法,此时的任务状态为TaskState.FINISHED
- TaskSchedulerImpl.statusUpdate()方法由executor中任务完成后发送给DriverEndpoint来触发
case smt: ShuffleMapTask =>
val shuffleStage = stage.asInstanceOf[ShuffleMapStage]
updateAccumulators(event)
val status = event.result.asInstanceOf[MapStatus]
val execId = status.location.executorId
logDebug("ShuffleMapTask finished on " + execId)
if (stageIdToStage(task.stageId).latestInfo.attemptId == task.stageAttemptId) {
// This task was for the currently running attempt of the stage. Since the task
// completed successfully from the perspective of the TaskSetManager, mark it as
// no longer pending (the TaskSetManager may consider the task complete even
// when the output needs to be ignored because the task's epoch is too small below.
// In this case, when pending partitions is empty, there will still be missing
// output locations, which will cause the DAGScheduler to resubmit the stage below.)
shuffleStage.pendingPartitions -= task.partitionId
}
if (failedEpoch.contains(execId) && smt.epoch <= failedEpoch(execId)) {
logInfo(s"Ignoring possibly bogus $smt completion from executor $execId")
} else {
// The epoch of the task is acceptable (i.e., the task was launched after the most
// recent failure we're aware of for the executor), so mark the task's output as
// available.
shuffleStage.addOutputLoc(smt.partitionId, status)
// Remove the task's partition from pending partitions. This may have already been
// done above, but will not have been done yet in cases where the task attempt was
// from an earlier attempt of the stage (i.e., not the attempt that's currently
// running). This allows the DAGScheduler to mark the stage as complete when one
// copy of each task has finished successfully, even if the currently active stage
// still has tasks running.
shuffleStage.pendingPartitions -= task.partitionId
}
if (runningStages.contains(shuffleStage) && shuffleStage.pendingPartitions.isEmpty) {
markStageAsFinished(shuffleStage)
logInfo("looking for newly runnable stages")
logInfo("running: " + runningStages)
logInfo("waiting: " + waitingStages)
logInfo("failed: " + failedStages)
// We supply true to increment the epoch number here in case this is a
// recomputation of the map outputs. In that case, some nodes may have cached
// locations with holes (from when we detected the error) and will need the
// epoch incremented to refetch them.
// TODO: Only increment the epoch number if this is not the first time
// we registered these map outputs.
//shuffleStage.outputLocInMapOutputTrackerFormat()得到ShuffleMapTask的返回值
//ShuffleMapTask完成时返回(BlockManagerId,[compressSize])
mapOutputTracker.registerMapOutputs(
shuffleStage.shuffleDep.shuffleId,
shuffleStage.outputLocInMapOutputTrackerFormat(),
changeEpoch = true)
clearCacheLocs()
if (!shuffleStage.isAvailable) {
// Some tasks had failed; let's resubmit this shuffleStage.
// TODO: Lower-level scheduler should also deal with this
logInfo("Resubmitting " + shuffleStage + " (" + shuffleStage.name +
") because some of its tasks had failed: " +
shuffleStage.findMissingPartitions().mkString(", "))
submitStage(shuffleStage)
} else {
// Mark any map-stage jobs waiting on this stage as finished
if (shuffleStage.mapStageJobs.nonEmpty) {
val stats = mapOutputTracker.getStatistics(shuffleStage.shuffleDep)
for (job <- shuffleStage.mapStageJobs) {
markMapStageJobAsFinished(job, stats)
}
}
}
// Note: newly runnable stages will be submitted below when we submit waiting stages
}
}
end