源码地址
springboot2教程系列
redis cluster安装
Springboot2(32)集成redis(jedis)
Redis(1)常用操作命令Redis(2)集群redis-cluster & redis主从同步
Redis(3)内存回收原理,及内存过期淘汰策略详解
Redis(4)阿里云-开发规范
Redis(5)n种妙用,不仅仅是缓存
org.redisson
redisson-spring-boot-starter
3.10.6
在项目的resources目录下,添加redisson的配置文件(这里使用yaml格式的配置文件redisson-config.yml,文件名可自己定, 文件的示例配置如下)
clusterServersConfig:
idleConnectionTimeout: 10000
pingTimeout: 1000
connectTimeout: 10000
timeout: 3000
retryAttempts: 3
retryInterval: 1500
reconnectionTimeout: 3000
failedAttempts: 3
password: null
subscriptionsPerConnection: 5
clientName: null
loadBalancer: ! {}
slaveSubscriptionConnectionMinimumIdleSize: 1
slaveSubscriptionConnectionPoolSize: 50
slaveConnectionMinimumIdleSize: 32
slaveConnectionPoolSize: 64
masterConnectionMinimumIdleSize: 32
masterConnectionPoolSize: 64
readMode: "SLAVE"
nodeAddresses:
- "redis://10.10.2.139:7001"
- "redis://10.10.2.139:7012"
- "redis://10.10.2.139:7000"
- "redis://10.10.2.139:7003"
- "redis://10.10.2.139:7004"
- "redis://10.10.2.139:7005"
scanInterval: 1000
threads: 0
nettyThreads: 0
codec: ! {}
transportMode: "NIO"
具体想加些什么配置,可以查看Redisson提供的Config类里支持的参数,不支持添加里面没有的参数配置。除了yaml类型格式的配置,也支持json格式的配置文件,具体不在这里展开,详情可以参考Redisson配置方法。
@Configuration
public class RedissonConfig {
@Bean
public RedissonClient redisson() throws IOException {
// 本例子使用的是yaml格式的配置文件,读取使用Config.fromYAML,如果是Json文件,则使用Config.fromJSON
Config config = Config.fromYAML(
RedissonConfig.class.getClassLoader().getResource("redisson-config.yml"));
return Redisson.create(config);
}
}
监听topic(“anyTopic”)的消息
@PostConstruct
public void topic(){
RTopic topic = redissonClient.getTopic("anyTopic");
topic.addListener(String.class, new MessageListener<String>() {
@Override
public void onMessage(CharSequence charSequence, String s) {
System.out.println(s);
}
});
}
在Redis节点故障转移(主从切换)或断线重连以后,所有的话题监听器将自动完成话题的重新订阅。
发布消息
RTopic topic = redisson.getTopic("anyTopic");
topic支持模糊匹配
// 订阅所有满足`topic1.*`表达式的话题
RPatternTopic topic1 = redisson.getPatternTopic("topic1.*");
int listenerId = topic1.addListener(Message.class, new PatternMessageListener<Message>() {
@Override
public void onMessage(String pattern, String channel, Message msg) {
Assert.fail();
}
});
在Redis节点故障转移(主从切换)或断线重连以后,所有的模糊话题监听器将自动完成话题的重新订阅。
Redisson利用Redis实现了Java分布式布隆过滤器(Bloom Filter)。所含最大比特数量为2^32
。
RBloomFilter<Integer> bloomFilter = redissonClient.getBloomFilter("sample");
// 初始化布隆过滤器,预计统计元素数量为55000000,期望误差率为0.03
bloomFilter.tryInit(55000000L, 0.003);
//添加元素
bloomFilter.add(1);
boolean b = bloomFilter.contains(1);
boolean b1 = bloomFilter.contains(2);
基于Redis的分布式限流器(RateLimiter)可以用来在分布式环境下现在请求方的调用频率。既适用于不同Redisson实例下的多线程限流,也适用于相同Redisson实例下的多线程限流。该算法不保证公平性。
RRateLimiter rateLimiter = redisson.getRateLimiter("myRateLimiter");
// 初始化
// 最大流速 = 每1秒钟产生10个令牌
rateLimiter.trySetRate(RateType.OVERALL, 10, 1, RateIntervalUnit.SECONDS);
CountDownLatch latch = new CountDownLatch(2);
limiter.acquire(3);
// ...
Thread t = new Thread(() -> {
limiter.acquire(2);
// ...
});
基于Redis的Redisson的分布式映射结构的RMap
Java对象实现了java.util.concurrent.ConcurrentMap
接口和java.util.Map
接口。与HashMap不同的是,RMap保持了元素的插入顺序。该对象的最大容量受Redis限制,最大元素数量是4 294 967 295
个。
RMap map = redissonClient.getMap("anyMap");
map.put("test","test");
Redisson的分布式的RMapCache
Java对象在基于RMap
的前提下实现了针对单个元素的淘汰机制。同时仍然保留了元素的插入顺序。由于RMapCache
是基于RMap
实现的,使它同时继承了java.util.concurrent.ConcurrentMap
接口和java.util.Map
接口。Redisson提供的Spring Cache整合以及JCache正是基于这样的功能来实现的。
目前的Redis自身并不支持散列(Hash)当中的元素淘汰,因此所有过期元素都是通过org.redisson.EvictionScheduler
实例来实现定期清理的。为了保证资源的有效利用,每次运行最多清理300个过期元素。任务的启动时间将根据上次实际清理数量自动调整,间隔时间趋于1秒到1小时之间。比如该次清理时删除了300条元素,那么下次执行清理的时间将在1秒以后(最小间隔时间)。一旦该次清理数量少于上次清理数量,时间间隔将增加1.5倍。
RMapCache<String, SomeObject> map = redisson.getMapCache("anyMap");
// 有效时间 ttl = 10分钟
map.put("key1", new SomeObject(), 10, TimeUnit.MINUTES);
// 有效时间 ttl = 10分钟, 最长闲置时间 maxIdleTime = 10秒钟
map.put("key1", new SomeObject(), 10, TimeUnit.MINUTES, 10, TimeUnit.SECONDS);
// 有效时间 = 3 秒钟
map.putIfAbsent("key2", new SomeObject(), 3, TimeUnit.SECONDS);
// 有效时间 ttl = 40秒钟, 最长闲置时间 maxIdleTime = 10秒钟
map.putIfAbsent("key2", new SomeObject(), 40, TimeUnit.SECONDS, 10, TimeUnit.SECONDS);
在特定的场景下,映射(Map)上的高度频繁的读取操作,使网络通信都被视为瓶颈时,使用Redisson提供的带有本地缓存功能的分布式本地缓存映射RLocalCachedMap
Java对象会是一个很好的选择。它同时实现了java.util.concurrent.ConcurrentMap
和java.util.Map
两个接口。本地缓存功能充分的利用了JVM的自身内存空间,对部分常用的元素实行就地缓存,这样的设计让读取操作的性能较分布式映射相比提高最多 45倍 。以下配置参数可以用来创建这个实例:
LocalCachedMapOptions options = LocalCachedMapOptions.defaults()
// 用于淘汰清除本地缓存内的元素
// 共有以下几种选择:
// LFU - 统计元素的使用频率,淘汰用得最少(最不常用)的。
// LRU - 按元素使用时间排序比较,淘汰最早(最久远)的。
// SOFT - 元素用Java的WeakReference来保存,缓存元素通过GC过程清除。
// WEAK - 元素用Java的SoftReference来保存, 缓存元素通过GC过程清除。
// NONE - 永不淘汰清除缓存元素。
.evictionPolicy(EvictionPolicy.NONE)
// 如果缓存容量值为0表示不限制本地缓存容量大小
.cacheSize(1000)
// 以下选项适用于断线原因造成了未收到本地缓存更新消息的情况。
// 断线重连的策略有以下几种:
// CLEAR - 如果断线一段时间以后则在重新建立连接以后清空本地缓存
// LOAD - 在服务端保存一份10分钟的作废日志
// 如果10分钟内重新建立连接,则按照作废日志内的记录清空本地缓存的元素
// 如果断线时间超过了这个时间,则将清空本地缓存中所有的内容
// NONE - 默认值。断线重连时不做处理。
.reconnectionStrategy(ReconnectionStrategy.NONE)
// 以下选项适用于不同本地缓存之间相互保持同步的情况
// 缓存同步策略有以下几种:
// INVALIDATE - 默认值。当本地缓存映射的某条元素发生变动时,同时驱逐所有相同本地缓存映射内的该元素
// UPDATE - 当本地缓存映射的某条元素发生变动时,同时更新所有相同本地缓存映射内的该元素
// NONE - 不做任何同步处理
.syncStrategy(SyncStrategy.INVALIDATE)
// 每个Map本地缓存里元素的有效时间,默认毫秒为单位
.timeToLive(10000)
// 或者
.timeToLive(10, TimeUnit.SECONDS)
// 每个Map本地缓存里元素的最长闲置时间,默认毫秒为单位
.maxIdle(10000)
// 或者
.maxIdle(10, TimeUnit.SECONDS);
RLocalCachedMap<String, Integer> map = redisson.getLocalCachedMap("test", options);
String prevObject = map.put("123", 1);
String currentObject = map.putIfAbsent("323", 2);
String obj = map.remove("123");
// 在不需要旧值的情况下可以使用fast为前缀的类似方法
map.fastPut("a", 1);
map.fastPutIfAbsent("d", 32);
map.fastRemove("b");
RFuture<String> putAsyncFuture = map.putAsync("321");
RFuture<Void> fastPutAsyncFuture = map.fastPutAsync("321");
map.fastPutAsync("321", new SomeObject());
map.fastRemoveAsync("321");
当不再使用Map本地缓存对象的时候应该手动销毁,如果Redisson对象被关闭(shutdown)了,则不用手动销毁。
RLocalCachedMap<String, Integer> map = ...
map.destroy();
如何通过加载数据的方式来降低过期淘汰事件发布信息对网络的影响
代码范例:
public void loadData(String cacheName, Map<String, String> data) {
RLocalCachedMap<String, String> clearMap = redisson.getLocalCachedMap(cacheName,
LocalCachedMapOptions.defaults().cacheSize(1).syncStrategy(SyncStrategy.INVALIDATE));
RLocalCachedMap<String, String> loadMap = redisson.getLocalCachedMap(cacheName,
LocalCachedMapOptions.defaults().cacheSize(1).syncStrategy(SyncStrategy.NONE));
loadMap.putAll(data);
clearMap.clearLocalCache();
}
Redisson为所有实现了RMapCache
或RLocalCachedMapCache
接口的对象提供了监听以下事件的监听器:
事件 | 监听器 元素 添加 事件 | org.redisson.api.map.event.EntryCreatedListener
元素 过期 事件 | org.redisson.api.map.event.EntryExpiredListener
元素 删除 事件 | org.redisson.api.map.event.EntryRemovedListener
元素 更新 事件 | org.redisson.api.map.event.EntryUpdatedListener
RMapCache<String, Integer> map = redisson.getMapCache("myMap");
// 或
RLocalCachedMapCache<String, Integer> map = redisson.getLocalCachedMapCache("myMap", options);
int updateListener = map.addListener(new EntryUpdatedListener<Integer, Integer>() {
@Override
public void onUpdated(EntryEvent<Integer, Integer> event) {
event.getKey(); // 字段名
event.getValue() // 新值
event.getOldValue() // 旧值
// ...
}
});
int createListener = map.addListener(new EntryCreatedListener<Integer, Integer>() {
@Override
public void onCreated(EntryEvent<Integer, Integer> event) {
event.getKey(); // 字段名
event.getValue() // 值
// ...
}
});
int expireListener = map.addListener(new EntryExpiredListener<Integer, Integer>() {
@Override
public void onExpired(EntryEvent<Integer, Integer> event) {
event.getKey(); // 字段名
event.getValue() // 值
// ...
}
});
int removeListener = map.addListener(new EntryRemovedListener<Integer, Integer>() {
@Override
public void onRemoved(EntryEvent<Integer, Integer> event) {
event.getKey(); // 字段名
event.getValue() // 值
// ...
}
});
map.removeListener(updateListener);
map.removeListener(createListener);
map.removeListener(expireListener);
map.removeListener(removeListener);
多个连续命令可以通过RBatch
对象在一次网络会话请求里合并发送,这样省去了产生多个请求消耗的时间和资源。这在Redis中叫做管道。
用户可以通过以下方式调整通过管道方式发送命令的方式:
BatchOptions options = BatchOptions.defaults()
// 指定执行模式
//
// ExecutionMode.REDIS_READ_ATOMIC - 所有命令缓存在Redis节点中,以原子性事务的方式执行。
//
// ExecutionMode.REDIS_WRITE_ATOMIC - 所有命令缓存在Redis节点中,以原子性事务的方式执行。
//
// ExecutionMode.IN_MEMORY - 所有命令缓存在Redisson本机内存中统一发送,但逐一执行(非事务)。默认模式。
//
// ExecutionMode.IN_MEMORY_ATOMIC - 所有命令缓存在Redisson本机内存中统一发送,并以原子性事务的方式执行。
//
.executionMode(ExecutionMode.IN_MEMORY)
// 告知Redis不用返回结果(可以减少网络用量)
.skipResult()
// 将写入操作同步到从节点
// 同步到2个从节点,等待时间为1秒钟
.syncSlaves(2, 1, TimeUnit.SECONDS)
// 处理结果超时为2秒钟
.responseTimeout(2, TimeUnit.SECONDS)
// 命令重试等待间隔时间为2秒钟
.retryInterval(2, TimeUnit.SECONDS);
// 命令重试次数。仅适用于未发送成功的命令
.retryAttempts(4);
使用方式如下:
RBatch batch = redisson.createBatch();
batch.getMap("test").fastPutAsync("1", "2");
batch.getMap("test").fastPutAsync("2", "3");
batch.getMap("test").putAsync("2", "5");
batch.getAtomicLongAsync("counter").incrementAndGetAsync();
batch.getAtomicLongAsync("counter").incrementAndGetAsync();
BatchResult res = batch.execute();
// 或者
Future<BatchResult> asyncRes = batch.executeAsync();
List<?> response = res.getResponses();
res.getSyncedSlaves();
在集群模式下,所有的命令会按各个槽所在的节点,筛选分配到各个节点并同时发送。每个节点返回的结果将会汇总到最终的结果列表里。
redisson.getBucket("foo").set("bar");
String r = redisson.getScript().eval(Mode.READ_ONLY,
"return redis.call('get', 'foo')", RScript.ReturnType.VALUE);
// 通过预存的脚本进行同样的操作
RScript s = redisson.getScript();
// 首先将脚本保存到所有的Redis主节点
String res = s.scriptLoad("return redis.call('get', 'foo')");
// 返回值 res == 282297a0228f48cd3fc6a55de6316f31422f5d17
// 再通过SHA值调用脚本
Future<Object> r1 = redisson.getScript().evalShaAsync(Mode.READ_ONLY,
"282297a0228f48cd3fc6a55de6316f31422f5d17",
RScript.ReturnType.VALUE, Collections.emptyList());
Redisson的分布式调度任务服务实现了java.util.concurrent.ScheduledExecutorService
接口,支持在不同的独立节点里执行基于java.util.concurrent.Callable
接口或java.lang.Runnable
接口的任务。Redisson独立节点按顺序运行Redis列队里的任务。调度任务是一种需要在未来某个指定时间运行一次或多次的特殊任务。
Redisson独立节点不要求任务的类在类路径里。他们会自动被Redisson独立节点的ClassLoader
加载。因此每次执行一个新任务时,不需要重启Redisson独立节点。
采用Callable
任务的范例:
public class CallableTask implements Callable<Long> {
@RInject
private RedissonClient redissonClient;
@Override
public Long call() throws Exception {
RMap<String, Integer> map = redissonClient.getMap("myMap");
Long result = 0;
for (Integer value : map.values()) {
result += value;
}
return result;
}
}
在创建ExecutorService
时可以配置以下参数:
ExecutorOptions options = ExecutorOptions.defaults()
// 指定重新尝试执行任务的时间间隔。
// ExecutorService的工作节点将等待10分钟后重新尝试执行任务
//
// 设定为0则不进行重试
//
// 默认值为5分钟
options.taskRetryInterval(10, TimeUnit.MINUTES);
RScheduledExecutorService executorService = redisson.getExecutorService("myExecutor");
ScheduledFuture<Long> future = executorService.schedule(new CallableTask(), 10, TimeUnit.MINUTES);
Long result = future.get();
使用Lambda任务的范例:
RExecutorService executorService = redisson.getExecutorService("myExecutor", options);
ScheduledFuture<Long> future = executorService.schedule((Callable & Serializable)() -> {
System.out.println("task has been executed!");
}, 10, TimeUnit.MINUTES);
Long result = future.get();
采用Runnable
任务的范例:
public class RunnableTask implements Runnable {
@RInject
private RedissonClient redissonClient;
private long param;
public RunnableTask() {
}
public RunnableTask(long param) {
this.param= param;
}
@Override
public void run() {
RAtomicLong atomic = redissonClient.getAtomicLong("myAtomic");
atomic.addAndGet(param);
}
}
RScheduledExecutorService executorService = redisson.getExecutorService("myExecutor");
ScheduledFuture<?> future1 = executorService.schedule(new RunnableTask(123), 10, TimeUnit.HOURS);
// ...
ScheduledFuture<?> future2 = executorService.scheduleAtFixedRate(new RunnableTask(123), 10, 25, TimeUnit.HOURS);
// ...
ScheduledFuture<?> future3 = executorService.scheduleWithFixedDelay(new RunnableTask(123), 5, 10, TimeUnit.HOURS);
在分布式调度任务中,可以通过CRON表达式来为任务设定一个更复杂的计划。表达式与Quartz的CRON格式完全兼容。
例如:
RScheduledExecutorService executorService = redisson.getExecutorService("myExecutor");
executorService.schedule(new RunnableTask(), CronSchedule.of("10 0/5 * * * ?"));
// ...
executorService.schedule(new RunnableTask(), CronSchedule.dailyAtHourAndMinute(10, 5));
// ...
executorService.schedule(new RunnableTask(), CronSchedule.weeklyOnDayAndHourAndMinute(12, 4, Calendar.MONDAY, Calendar.FRIDAY));
分布式调度任务服务提供了两张取消任务的方式:通过调用ScheduledFuture.cancel()
方法或调用RScheduledExecutorService.cancelScheduledTask
方法。通过对Thread.currentThread().isInterrupted()
方法的调用可以在已经处于运行状态的任务里实现任务中断:
public class RunnableTask implements Callable<Long> {
@RInject
private RedissonClient redissonClient;
@Override
public Long call() throws Exception {
RMap<String, Integer> map = redissonClient.getMap("myMap");
Long result = 0;
// map里包含了许多的元素
for (Integer value : map.values()) {
if (Thread.currentThread().isInterrupted()) {
// 任务被取消了
return null;
}
result += value;
}
return result;
}
}
RScheduledExecutorService executorService = redisson.getExecutorService("myExecutor");
RScheduledFuture<Long> future = executorService.scheduleAsync(new RunnableTask(), CronSchedule.dailyAtHourAndMinute(10, 5));
// ...
future.cancel(true);
// 或
String taskId = future.getTaskId();
// ...
executorService.cancelScheduledTask(taskId);