JVM编译优化技术:方法内联。

最重要的优化技术之一:方法内联。

方法内联,它是编译器最重要的优化手段之一,除了消除方法调用的成本之外,它更重要的意义是为其他优化手段建立良好的基础,如下所示的简单例子就揭示了内联对其他优化手段的意义:事实上testInline()方法的内部实现全部都是无用的代码,如果不做内联,后续即使进行了无用代码消除的优化,也无法发现任何“Dead Code”,因为如果分开来看,foo()和testInline()两个方法里面的操作都可能是有意义的。

public static void foo(Object obj){
    if(obj != null) {
        System.out.println("do something");
    }
    public static void testInline(String[] args) {
        Object obj = null;
        foo(obj);
    }
}

方法内联的优化行为看起来很简单,不过是把目标方法的代码“复制”到发起调用的方法之中,避免发生真实的方法调用而已。但实际上Java虚拟机中的内联过程远远没有那么简单,因为如果不是即时编译器做了一些特别的努力,按照经典编译原理的优化理论,大多数的Java方法都无法进行内联。
只有使用invokespecial指令调用的私有方法、实例构造器、父类方法以及使用invokestatic指令进行调用的静态方法才是在编译器进行解析的,除了上述4种方法之外,其他的Java方法调用都需要在运行时进行方法接收者的多态选择,并且都有可能存在多于一个版本的方法接收者(最多再除去被final修饰的方法这种特殊情况,尽管他使用invokevirtual指令调用,但也是非虚方法,Java语言规范中明确说明了这点),简而言之,Java语言中默认的实例方法是虚方法。
对于一个虚方法,编译器做内联的时候根本无法确定应该使用哪个方法版本,如果以“b.get()”内联为“b.value”为例的话,就是不依赖上下文就无法确定b的实际类型是什么。假如有ParentB和SubB两个具有继承关系的类,并且子类重写了父类的get()方法,那么,是要执行父类的get()方法还是子类的get()方法,需要在运行期才能确定,编译器无法得出结论。
由于Java语言提倡使用面向对象的编程方式进行编程,而Java对象的方法默认就是虚方法,因此Java间接鼓励了程序员使用大量的虚方法来完成程序逻辑。根据上面的分析,如果内联与虚方法之间产生“矛盾”,那该怎么办?是不是为了提高执行性能,就要到处使用final关键字去修饰方法呢?
为了解决虚方法的内联问题,Java虚拟机设计团队想了很多办法,首先是引入了一种名为“类型继承关系分析”(Class Hierarchy Analysis,CHA)的技术,这是一种基于整个应用程序的类型分析技术,它用于确定在目前已加载的类中,某个接口是否有多于一种的实现,某个类是否存在子类、子类是否为抽象类等信息。
编译器在进行内联时,如果是非虚方法,那么直接进行内联就可以了,这时候的内联是由稳定前提保障的。如果遇到虚方法,则会向CHA查询此方法在当前程序下是否有多个目标版本可供选择,如果查询结果只有一个版本,那也可以进行内联,不过这种内联就属于激进优化,需要预留一个“逃生门”(Guard条件不成立时的Slow Path),称为守护内联(Guarded Inlining)。如果程序的后续执行过程中,虚拟机一直没有加载到会令这个方法的接收者的继承关系发生变化的类,那这个内联优化代码就可以一直使用下去。但如果加载了导致继承关系发生变化的新类,那就需要抛弃已经编译的代码,退回到解释状态执行,或者重新进行编译。
如果向CHA查询出来的结果是由多个版本的目标方法可供选择,则编译器还将会进行最后一次努力,使用内敛缓存(Inline Cache)来完成方法内联,这是一个建立在目标方法正常入口之前的缓存,它的工作原理大致是:在未发生方法调用之前,内联缓存状态为空,当第一次调用发生后,缓存记录下方法接收者的版本信息,并且每次进行方法调用时都比较接收者版本,如果以后进来的每次调用的方法接收者版本都是一样的,那这个内联还可以一直用下去。如果发生了方法接收者不一致的情况,就说明程序真正使用了虚方法的多态特性,这时才会取消内联,查找虚方法表进行方法分派。
所以说,在许多情况下虚拟机进行的内联都是一种激进优化,激进优化的手段在高性能的商用虚拟机中很常见,除了内联之外,对于出现概率很小(通过经验数据或解释器收集到的性能监控信息确定概率大小)的隐式异常、使用概率很小的分支等都可以被激进优化“移除”,如果真的出现了小概率事件,这时才会从“逃生门”回到解释状态重新执行。

你可能感兴趣的:(JVM)