【MachineLearning】之 多项式回归(理论)

Topic:
  1. 多项式回归简介
  2. 多项式拟合
  3. 多项式特征矩阵

之前学习了 线性回归,那么多项式回归又是什么呢?


一、多项式回归简介


在线性回归中,我们通过建立自变量 x 的一次方程来拟合数据

而非线性回归中,则需要建立因变量和自变量之间的非线性关系。

从直观上讲,也就是拟合的直线变成了「曲线」。

【MachineLearning】之 多项式回归(理论)_第1张图片

对于非线性回归问题而言,最常见的便是「多项式回归」

多项式: x32xyz2+2yz+1 x 3 − 2 x y z 2 + 2 y z + 1




二、多项式拟合


一元高阶多项式函数:

y(x,w)=w0+w1x+w2x2+...+wmxm=j=0mwjxj(1) (1) y ( x , w ) = w 0 + w 1 x + w 2 x 2 + . . . + w m x m = ∑ j = 0 m w j x j

其中, m m 表示多项式的阶数, xj x j 表示 x x j j 次幂, w w 则代表该多项式的系数。

当我们使用上面的多项式去拟合散点时,需要确定两个要素,分别是:多项式系数 w w 以及多项式阶数 m m

【MachineLearning】之 多项式回归(理论)_第2张图片

可以看到当 m=8 时,曲线呈现出明显的震荡,这就是过拟合(overfitting)

那什么是过拟合?过拟合不好吗?

过拟合:由于学习能力过于强大,以至于把训练样本所包含的不太一般的特性学到了。

过拟合不好? 因为只是把潜在样本的特征考虑进去了,并没有增强学习能力。




三、多项式特征矩阵


多项式回归相当于线性回归的特殊形式。

比如:一元二次多项式: y=w0+w1x+w2x2 y = w 0 + w 1 x + w 2 x 2

将其转换为: y=w0+w1x1+w2x2 y = w 0 + w 1 ∗ x 1 + w 2 ∗ x 2 x=x1 x = x 1 x2=x2 x 2 = x 2
这样就变成了多元线性回归。

这样就实现了 一元高次多项式到多元一次多项式之间的转换

之前,我们通过 y=wx+b y = w x + b 线性回归模型进行拟合。
同样, y=w0+w1x+w2x2 y = w 0 + w 1 x + w 2 x 2 ,若能得到由 x=x1,x2=x2 x = x 1 , x 2 = x 2 构成的特征矩阵,那也就可以通过线性回归进行拟合了。

你可能感兴趣的:(【MachineLearning】之 多项式回归(理论))