Alpha-beta剪枝算法

Alpha-beta剪枝算法实例分析

转载  2015年05月11日 15:59:31
  • 4128

看本章之前,请先参看前一篇文章《Minimax算法及实例分析》


由于Minimax算法有一个很大的问题就是计算复杂性。由于所需搜索的节点数随最大深度呈指数膨胀,而算法的效果往往和深度相关,因此这极大限制了算法的效果。

Alpha-beta剪枝是对Minimax的补充和改进。采用Alpha-beta剪枝后,我们可不必构造和搜索最大深度D内的所有节点,在构造过程中,如果发现当前格局再往下不能找到更好的解,我们就停止在这个格局及以下的搜索,也就是剪枝。

Alpha-beta基于这样一种朴素的思想:时时刻刻记得当前已经知道的最好选择,如果从当前格局搜索下去,不可能找到比已知最优解更好的解,则停止这个格局分支的搜索(剪枝),回溯到父节点继续搜索。

Alpha-beta算法可以看成变种的Minimax,基本方法是从根节点开始采用深度优先的方式构造格局树,在构造每个节点时,都会读取此节点的alpha和beta两个值,其中alpha表示搜索到当前节点时已知的最好选择的下界,而beta表示从这个节点往下搜索最坏结局的上界。由于我们假设对手会将局势引入最坏结局之一,因此当beta小于alpha时,表示从此处开始不论最终结局是哪一个,其上限价值也要低于已知的最优解,也就是说已经不可能此处向下找到更好的解,所以就会剪枝。


下面同样以上述示例介绍Alpha-beta剪枝算法的工作原理。我们从根节点开始,详述使用Alpha-beta的每一个步骤:

  1. 根节点的alpha和beta分别被初始化为,和+
  2. 深度优先搜索第一个孩子,不是叶子节点,所以alpha和beta继承自父节点,分别为,和+
  3. 搜索第三层的第一个孩子,同上。
  4. 搜索第四层,到达叶子节点,采用评价函数得到此节点的评价值为1。

    Alpha-beta剪枝算法_第1张图片

  5. 此叶节点的父节点为max节点,因此更新其alpha值为1,表示此节点取值的下界为1。

  6. 再看另外一个子节点,值为20,大于当前alpha值,因此将alpha值更新为20。
  7. 此时第三层最左节点所有子树搜索完毕,作为max节点,更新其真实值为当前alpha值:20。
  8. 由于其父节点(第二层最左节点)为min节点,因此更新其父节点beta值为20,表示这个节点取值最多为20。

    Alpha-beta剪枝算法_第2张图片

  9. 搜索第二层最左节点的第二个孩子及其子树,按上述逻辑,得到值为50(注意第二层最左节点的beta值要传递给孩子)。由于50大于20,不更新min节点的beta值。

    Alpha-beta剪枝算法_第3张图片

  10. 搜索第二层最左节点的第三个孩子。当看完第一个叶子节点后,发现第三个孩子的alpha=beta,此时表示这个节点下不会再有更好解,于是剪枝。

    Alpha-beta剪枝算法_第4张图片

  11. 继续搜索B分支,当搜索完B分支的第一个孩子后,发现此时B分支的alpha为20,beta为10。这表示B分支节点的最大取值不会超过10,而我们已经在A分支取到20,此时满足alpha大于等于beta的剪枝条件,因此将B剪枝。并将B分支的节点值设为10,注意,这个10不一定是这个节点的真实值,而只是上线,B节点的真实值可能是5,可能是1,可能是任何小于10的值。但是已经无所谓了,反正我们知道这个分支不会好过A分支,因此可以放弃了。

    Alpha-beta剪枝算法_第5张图片

  12. 在C分支搜索时遇到了与B分支相同的情况。因此讲C分支剪枝。

    Alpha-beta剪枝算法_第6张图片

此时搜索全部完毕,而我们也得到了这一步的策略:应该走A分支。

可以看到相比普通Minimax要搜索18个叶子节点相比,这里只搜索了9个。采用Alpha-beta剪枝,可以在相同时间内加大Minimax的搜索深度,因此可以获得更好的效果。并且Alpha-beta的解和普通Minimax的解是一致的。

你可能感兴趣的:(算法,智能系统)