循环神经网络(rnn)的时间序列预测

一:我们利用rnn循环神经网络来预测sin函数的一个例子来学习:

在预测sin函数之前我们首先来了解一下tensorflow的高层封装TFLearn,它可以让tensorflow的代码效率更高效,TFLearn集成在tf.contrib.learn里,TFLearn即封装了一些神经网络结构,又省去了模型训练的部分,让tensorflow的程序变得更加简短。

from sklearn import cross_validation
from sklearn import datasets
from sklearn import metrics
import tensorflow as tf
from sklearn.model_selection import train_test_split
learn=tf.contrib.learn

def my_model(features,target):
    target=tf.one_hot(target,3,1,0)
    logits,loss=learn.models.logistic_regression(features,target)

    train_op=tf.contrib.layers.optimize_loss(
        loss,
        tf.contrib.framework.get_global_step(),
        optimizer='Adagrad',
        learning_rate=0.1)
    return tf.arg_max(logits,1),loss,train_op
iris=datasets.load_iris()
x_train,x_test,y_train,y_test=train_test_split(
    iris.data,iris.target,test_size=0.2,random_state=0)

classifier=learn.Estimator(model_fn=my_model)
classifier.fit(x_train,y_train,steps=100)
y_predicted=classifier.predict(x_test)
score=metrics.accuracy_score(y_test,y_predicted)
print ('Accuracy: %.2f%%'%(score*100))


二:时间序列预测sin函数,因为标准的循环神经网络预测的是离散的数值,所以在程序中需要将连续的sin函数曲线离散话,在这里离散化就是在一个给定的区间[0,MAX]内,通过有限个采样点模拟一个连续的曲线。

import numpy as np
import tensorflow as tf
from tensorflow.contrib import rnn

import matplotlib as mpl
from tensorflow.contrib.learn.python.learn.estimators.estimator import SKCompat

mpl.use('Agg')
from matplotlib import pyplot as plt

learn = tf.contrib.learn
HIDDEN_SIZE = 30
NUM_LAYERS = 2
TIMESTEPS = 10
TRAINING_STEPS = 10000
BATCH_SIZE = 32

TRAINING_EXAMPLES = 10000
TESTING_EXAMPLES = 1000
SAMPLE_GAP = 0.01



def generate_data(seq):
    X = []
    Y = []

    for i in range(len(seq) - TIMESTEPS - 1):
        X.append([seq[i:i + TIMESTEPS]])
        Y.append([seq[i + TIMESTEPS]])
    return np.array(X, dtype=np.float32), np.array(Y, dtype=np.float32)


def LstmCell():
    lstm_cell = rnn.BasicLSTMCell(HIDDEN_SIZE, state_is_tuple=True)
    return lstm_cell



def lstm_model(X, y):
    cell = rnn.MultiRNNCell([LstmCell() for _ in range(NUM_LAYERS)])
    output, _ = tf.nn.dynamic_rnn(cell, X, dtype=tf.float32)
    output = tf.reshape(output, [-1, HIDDEN_SIZE])

    predictions = tf.contrib.layers.fully_connected(output, 1, None)


    labels = tf.reshape(y, [-1])
    predictions = tf.reshape(predictions, [-1])

    loss = tf.losses.mean_squared_error(predictions, labels)
    train_op = tf.contrib.layers.optimize_loss(loss, tf.contrib.framework.get_global_step(),
                                               optimizer="Adagrad",
                                               learning_rate=0.1)
    return predictions, loss, train_op



regressor = SKCompat(learn.Estimator(model_fn=lstm_model, model_dir="Models/model_2"))

test_start = TRAINING_EXAMPLES * SAMPLE_GAP
test_end = (TRAINING_EXAMPLES + TESTING_EXAMPLES) * SAMPLE_GAP
train_X, train_y = generate_data(np.sin(np.linspace(0, test_start, TRAINING_EXAMPLES, dtype=np.float32)))
test_X, test_y = generate_data(np.sin(np.linspace(test_start, test_end, TESTING_EXAMPLES, dtype=np.float32)))

regressor.fit(train_X, train_y, batch_size=BATCH_SIZE, steps=TRAINING_STEPS)

predicted = [[pred] for pred in regressor.predict(test_X)]


rmse = np.sqrt(((predicted - test_y) ** 2).mean(axis=0))
print("Mean Square Error is:%f" % rmse[0])

plot_predicted, = plt.plot(predicted, label='predicted')
plot_test, = plt.plot(test_y, label='real_sin')
plt.legend([plot_predicted, plot_test], ['predicted','real_sin'])
fig=plt.figure()
plt.show()
fig.svaefig('sin.png')
最后我们得到Mean Square Error is:0.001563,说明sin函数预测的还算可以 ,几乎是重合的

你可能感兴趣的:(tensorflow)