Tensorflow生成自己的图片数据集TFrecords(支持多标签label)

Tensorflow生成自己的图片数据集TFrecords

       尊重原创,转载请注明出处:https://blog.csdn.net/guyuealian/article/details/80857228

       使用TensorFlow进行网络训练时,为了提高读取数据的效率,一般建议将训练数据转换为TFrecords格式。为了方面调用,本博客提供一个可通用,已经封装好的create_tf_record.py模块,方便以后调用。

      博客Github源码:https://github.com/PanJinquan/tensorflow-learning-tutorials ->tf_record_demo文件夹(觉得可以,还请给个“Star”哦


目录

Tensorflow生成自己的图片数据集TFrecords

1.项目结构

2.生成自己的图片数据集TFrecords

2.1 生成单个record文件 (单label)

2.2 生成单个record文件 (多label)

2.3 生成分割多个record文件 

3. 直接文件读取方式

4.数据输入管道:Pipeline机制

map

prefetch

repeat

完整代码

5.参考资料:


1.项目结构

项目目录结构如下所示:

Tensorflow生成自己的图片数据集TFrecords(支持多标签label)_第1张图片

其中train.txt保存图片的路径和标签信息

dog/1.jpg 0
dog/2.jpg 0
dog/3.jpg 0
dog/4.jpg 0
cat/1.jpg 1
cat/2.jpg 1
cat/3.jpg 1
cat/4.jpg 1

2.生成自己的图片数据集TFrecords

使用下面create_tf_record.py可以生成自己的图片数据集TFrecords,完整代码和解析如下:

2.1 生成单个record文件 (单label)

     下面是封装好的py文件,可以直接生成单个record文件 ,当然这里假设只有一个label情况

# -*-coding: utf-8 -*-
"""
    @Project: create_tfrecord
    @File   : create_tfrecord.py
    @Author : panjq
    @E-mail : [email protected]
    @Date   : 2018-07-27 17:19:54
    @desc   : 将图片数据保存为单个tfrecord文件
"""

##########################################################################

import tensorflow as tf
import numpy as np
import os
import cv2
import matplotlib.pyplot as plt
import random
from PIL import Image


##########################################################################
def _int64_feature(value):
    return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
# 生成字符串型的属性
def _bytes_feature(value):
    return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
# 生成实数型的属性
def float_list_feature(value):
  return tf.train.Feature(float_list=tf.train.FloatList(value=value))

def get_example_nums(tf_records_filenames):
    '''
    统计tf_records图像的个数(example)个数
    :param tf_records_filenames: tf_records文件路径
    :return:
    '''
    nums= 0
    for record in tf.python_io.tf_record_iterator(tf_records_filenames):
        nums += 1
    return nums

def show_image(title,image):
    '''
    显示图片
    :param title: 图像标题
    :param image: 图像的数据
    :return:
    '''
    # plt.figure("show_image")
    # print(image.dtype)
    plt.imshow(image)
    plt.axis('on')    # 关掉坐标轴为 off
    plt.title(title)  # 图像题目
    plt.show()

def load_labels_file(filename,labels_num=1,shuffle=False):
    '''
    载图txt文件,文件中每行为一个图片信息,且以空格隔开:图像路径 标签1 标签2,如:test_image/1.jpg 0 2
    :param filename:
    :param labels_num :labels个数
    :param shuffle :是否打乱顺序
    :return:images type->list
    :return:labels type->list
    '''
    images=[]
    labels=[]
    with open(filename) as f:
        lines_list=f.readlines()
        if shuffle:
            random.shuffle(lines_list)

        for lines in lines_list:
            line=lines.rstrip().split(' ')
            label=[]
            for i in range(labels_num):
                label.append(int(line[i+1]))
            images.append(line[0])
            labels.append(label)
    return images,labels

def read_image(filename, resize_height, resize_width,normalization=False):
    '''
    读取图片数据,默认返回的是uint8,[0,255]
    :param filename:
    :param resize_height:
    :param resize_width:
    :param normalization:是否归一化到[0.,1.0]
    :return: 返回的图片数据
    '''

    bgr_image = cv2.imread(filename)
    if len(bgr_image.shape)==2:#若是灰度图则转为三通道
        print("Warning:gray image",filename)
        bgr_image = cv2.cvtColor(bgr_image, cv2.COLOR_GRAY2BGR)

    rgb_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2RGB)#将BGR转为RGB
    # show_image(filename,rgb_image)
    # rgb_image=Image.open(filename)
    if resize_height>0 and resize_width>0:
        rgb_image=cv2.resize(rgb_image,(resize_width,resize_height))
    rgb_image=np.asanyarray(rgb_image)
    if normalization:
        # 不能写成:rgb_image=rgb_image/255
        rgb_image=rgb_image/255.0
    # show_image("src resize image",image)
    return rgb_image


def get_batch_images(images,labels,batch_size,labels_nums,one_hot=False,shuffle=False,num_threads=1):
    '''
    :param images:图像
    :param labels:标签
    :param batch_size:
    :param labels_nums:标签个数
    :param one_hot:是否将labels转为one_hot的形式
    :param shuffle:是否打乱顺序,一般train时shuffle=True,验证时shuffle=False
    :return:返回batch的images和labels
    '''
    min_after_dequeue = 200
    capacity = min_after_dequeue + 3 * batch_size  # 保证capacity必须大于min_after_dequeue参数值
    if shuffle:
        images_batch, labels_batch = tf.train.shuffle_batch([images,labels],
                                                                    batch_size=batch_size,
                                                                    capacity=capacity,
                                                                    min_after_dequeue=min_after_dequeue,
                                                                    num_threads=num_threads)
    else:
        images_batch, labels_batch = tf.train.batch([images,labels],
                                                        batch_size=batch_size,
                                                        capacity=capacity,
                                                        num_threads=num_threads)
    if one_hot:
        labels_batch = tf.one_hot(labels_batch, labels_nums, 1, 0)
    return images_batch,labels_batch

def read_records(filename,resize_height, resize_width,type=None):
    '''
    解析record文件:源文件的图像数据是RGB,uint8,[0,255],一般作为训练数据时,需要归一化到[0,1]
    :param filename:
    :param resize_height:
    :param resize_width:
    :param type:选择图像数据的返回类型
         None:默认将uint8-[0,255]转为float32-[0,255]
         normalization:归一化float32-[0,1]
         standardization:标准化float32-[0,1],再减均值中心化
    :return:
    '''
    # 创建文件队列,不限读取的数量
    filename_queue = tf.train.string_input_producer([filename])
    # create a reader from file queue
    reader = tf.TFRecordReader()
    # reader从文件队列中读入一个序列化的样本
    _, serialized_example = reader.read(filename_queue)
    # get feature from serialized example
    # 解析符号化的样本
    features = tf.parse_single_example(
        serialized_example,
        features={
            'image_raw': tf.FixedLenFeature([], tf.string),
            'height': tf.FixedLenFeature([], tf.int64),
            'width': tf.FixedLenFeature([], tf.int64),
            'depth': tf.FixedLenFeature([], tf.int64),
            'label': tf.FixedLenFeature([], tf.int64)
        }
    )
    tf_image = tf.decode_raw(features['image_raw'], tf.uint8)#获得图像原始的数据

    tf_height = features['height']
    tf_width = features['width']
    tf_depth = features['depth']
    tf_label = tf.cast(features['label'], tf.int32)
    # PS:恢复原始图像数据,reshape的大小必须与保存之前的图像shape一致,否则出错
    # tf_image=tf.reshape(tf_image, [-1])    # 转换为行向量
    tf_image=tf.reshape(tf_image, [resize_height, resize_width, 3]) # 设置图像的维度

    # 恢复数据后,才可以对图像进行resize_images:输入uint->输出float32
    # tf_image=tf.image.resize_images(tf_image,[224, 224])

    # [3]数据类型处理
    # 存储的图像类型为uint8,tensorflow训练时数据必须是tf.float32
    if type is None:
        tf_image = tf.cast(tf_image, tf.float32)
    elif type == 'normalization':  # [1]若需要归一化请使用:
        # 仅当输入数据是uint8,才会归一化[0,255]
        # tf_image = tf.cast(tf_image, dtype=tf.uint8)
        # tf_image = tf.image.convert_image_dtype(tf_image, tf.float32)
        tf_image = tf.cast(tf_image, tf.float32) * (1. / 255.0)  # 归一化
    elif type == 'standardization':  # 标准化
        # tf_image = tf.cast(tf_image, dtype=tf.uint8)
        # tf_image = tf.image.per_image_standardization(tf_image)  # 标准化(减均值除方差)
        # 若需要归一化,且中心化,假设均值为0.5,请使用:
        tf_image = tf.cast(tf_image, tf.float32) * (1. / 255) - 0.5  # 中心化

    # 这里仅仅返回图像和标签
    # return tf_image, tf_height,tf_width,tf_depth,tf_label
    return tf_image,tf_label


def create_records(image_dir,file, output_record_dir, resize_height, resize_width,shuffle,log=5):
    '''
    实现将图像原始数据,label,长,宽等信息保存为record文件
    注意:读取的图像数据默认是uint8,再转为tf的字符串型BytesList保存,解析请需要根据需要转换类型
    :param image_dir:原始图像的目录
    :param file:输入保存图片信息的txt文件(image_dir+file构成图片的路径)
    :param output_record_dir:保存record文件的路径
    :param resize_height:
    :param resize_width:
    PS:当resize_height或者resize_width=0是,不执行resize
    :param shuffle:是否打乱顺序
    :param log:log信息打印间隔
    '''
    # 加载文件,仅获取一个label
    images_list, labels_list=load_labels_file(file,1,shuffle)

    writer = tf.python_io.TFRecordWriter(output_record_dir)
    for i, [image_name, labels] in enumerate(zip(images_list, labels_list)):
        image_path=os.path.join(image_dir,images_list[i])
        if not os.path.exists(image_path):
            print('Err:no image',image_path)
            continue
        image = read_image(image_path, resize_height, resize_width)
        image_raw = image.tostring()
        if i%log==0 or i==len(images_list)-1:
            print('------------processing:%d-th------------' % (i))
            print('current image_path=%s' % (image_path),'shape:{}'.format(image.shape),'labels:{}'.format(labels))
        # 这里仅保存一个label,多label适当增加"'label': _int64_feature(label)"项
        label=labels[0]
        example = tf.train.Example(features=tf.train.Features(feature={
            'image_raw': _bytes_feature(image_raw),
            'height': _int64_feature(image.shape[0]),
            'width': _int64_feature(image.shape[1]),
            'depth': _int64_feature(image.shape[2]),
            'label': _int64_feature(label)
        }))
        writer.write(example.SerializeToString())
    writer.close()

def disp_records(record_file,resize_height, resize_width,show_nums=4):
    '''
    解析record文件,并显示show_nums张图片,主要用于验证生成record文件是否成功
    :param tfrecord_file: record文件路径
    :return:
    '''
    # 读取record函数
    tf_image, tf_label = read_records(record_file,resize_height,resize_width,type='normalization')
    # 显示前4个图片
    init_op = tf.initialize_all_variables()
    with tf.Session() as sess:
        sess.run(init_op)
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)
        for i in range(show_nums):
            image,label = sess.run([tf_image,tf_label])  # 在会话中取出image和label
            # image = tf_image.eval()
            # 直接从record解析的image是一个向量,需要reshape显示
            # image = image.reshape([height,width,depth])
            print('shape:{},tpye:{},labels:{}'.format(image.shape,image.dtype,label))
            # pilimg = Image.fromarray(np.asarray(image_eval_reshape))
            # pilimg.show()
            show_image("image:%d"%(label),image)
        coord.request_stop()
        coord.join(threads)


def batch_test(record_file,resize_height, resize_width):
    '''
    :param record_file: record文件路径
    :param resize_height:
    :param resize_width:
    :return:
    :PS:image_batch, label_batch一般作为网络的输入
    '''
    # 读取record函数
    tf_image,tf_label = read_records(record_file,resize_height,resize_width,type='normalization')
    image_batch, label_batch= get_batch_images(tf_image,tf_label,batch_size=4,labels_nums=5,one_hot=False,shuffle=False)

    init = tf.global_variables_initializer()
    with tf.Session() as sess:  # 开始一个会话
        sess.run(init)
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(coord=coord)
        for i in range(4):
            # 在会话中取出images和labels
            images, labels = sess.run([image_batch, label_batch])
            # 这里仅显示每个batch里第一张图片
            show_image("image", images[0, :, :, :])
            print('shape:{},tpye:{},labels:{}'.format(images.shape,images.dtype,labels))

        # 停止所有线程
        coord.request_stop()
        coord.join(threads)


if __name__ == '__main__':
    # 参数设置

    resize_height = 224  # 指定存储图片高度
    resize_width = 224  # 指定存储图片宽度
    shuffle=True
    log=5
    # 产生train.record文件
    image_dir='dataset/train'
    train_labels = 'dataset/train.txt'  # 图片路径
    train_record_output = 'dataset/record/train.tfrecords'
    create_records(image_dir,train_labels, train_record_output, resize_height, resize_width,shuffle,log)
    train_nums=get_example_nums(train_record_output)
    print("save train example nums={}".format(train_nums))

    # 产生val.record文件
    image_dir='dataset/val'
    val_labels = 'dataset/val.txt'  # 图片路径
    val_record_output = 'dataset/record/val.tfrecords'
    create_records(image_dir,val_labels, val_record_output, resize_height, resize_width,shuffle,log)
    val_nums=get_example_nums(val_record_output)
    print("save val example nums={}".format(val_nums))

    # 测试显示函数
    # disp_records(train_record_output,resize_height, resize_width)
    batch_test(train_record_output,resize_height, resize_width)

2.2 生成单个record文件 (多label)

    对于多label的情况,你可以在单label的基础上增加多个“label': tf.FixedLenFeature([], tf.int64)“,但每次label个数不一样时,都需要修改,挺麻烦的。这里提供一个方法:label数据也可以像图像数据那样,转为string类型来保存:labels_raw = np.asanyarray(labels,dtype=np.float32).tostring() ,读取也跟图像数据一样:tf_label = tf.decode_raw(features['labels'],tf.float32) ,这样,不管多少个label,我们都可以保存为record文件了:

   多label的TXT文件:

0.jpg 0.33 0.55
1.jpg 0.42 0.73
2.jpg 0.16 0.75
3.jpg 0.78 0.66
4.jpg 0.46 0.59
5.jpg 0.46 0.09
6.jpg 0.89 0.93
7.jpg 0.42 0.82
8.jpg 0.39 0.76
9.jpg 0.46 0.40
# -*-coding: utf-8 -*-
"""
    @Project: create_tfrecord
    @File   : create_tf_record_multi_label.py
    @Author : panjq
    @E-mail : [email protected]
    @Date   : 2018-07-27 17:19:54
    @desc   : 将图片数据,多label,保存为单个tfrecord文件
"""

##########################################################################

import tensorflow as tf
import numpy as np
import os
import cv2
import matplotlib.pyplot as plt
import random
from PIL import Image


##########################################################################
def _int64_feature(value):
    return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))

def _float_feature(value):
    return tf.train.Feature(float_list=tf.train.FloatList(value=[value]))

# 生成字符串型的属性
def _bytes_feature(value):
    return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
# 生成实数型的属性
def float_list_feature(value):
  return tf.train.Feature(float_list=tf.train.FloatList(value=value))

def get_example_nums(tf_records_filenames):
    '''
    统计tf_records图像的个数(example)个数
    :param tf_records_filenames: tf_records文件路径
    :return:
    '''
    nums= 0
    for record in tf.python_io.tf_record_iterator(tf_records_filenames):
        nums += 1
    return nums

def show_image(title,image):
    '''
    显示图片
    :param title: 图像标题
    :param image: 图像的数据
    :return:
    '''
    # plt.figure("show_image")
    # print(image.dtype)
    plt.imshow(image)
    plt.axis('on')    # 关掉坐标轴为 off
    plt.title(title)  # 图像题目
    plt.show()

def load_labels_file(filename,labels_num=1,shuffle=False):
    '''
    载图txt文件,文件中每行为一个图片信息,且以空格隔开:图像路径 标签1 标签2,如:test_image/1.jpg 0 2
    :param filename:
    :param labels_num :labels个数
    :param shuffle :是否打乱顺序
    :return:images type->list
    :return:labels type->list
    '''
    images=[]
    labels=[]
    with open(filename) as f:
        lines_list=f.readlines()
        if shuffle:
            random.shuffle(lines_list)

        for lines in lines_list:
            line=lines.rstrip().split(' ')
            label=[]
            for i in range(labels_num):
                label.append(float(line[i+1]))
            images.append(line[0])
            labels.append(label)
    return images,labels

def read_image(filename, resize_height, resize_width,normalization=False):
    '''
    读取图片数据,默认返回的是uint8,[0,255]
    :param filename:
    :param resize_height:
    :param resize_width:
    :param normalization:是否归一化到[0.,1.0]
    :return: 返回的图片数据
    '''

    bgr_image = cv2.imread(filename)
    if len(bgr_image.shape)==2:#若是灰度图则转为三通道
        print("Warning:gray image",filename)
        bgr_image = cv2.cvtColor(bgr_image, cv2.COLOR_GRAY2BGR)

    rgb_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2RGB)#将BGR转为RGB
    # show_image(filename,rgb_image)
    # rgb_image=Image.open(filename)
    if resize_height>0 and resize_width>0:
        rgb_image=cv2.resize(rgb_image,(resize_width,resize_height))
    rgb_image=np.asanyarray(rgb_image)
    if normalization:
        # 不能写成:rgb_image=rgb_image/255
        rgb_image=rgb_image/255.0
    # show_image("src resize image",image)
    return rgb_image


def get_batch_images(images,labels,batch_size,labels_nums,one_hot=False,shuffle=False,num_threads=1):
    '''
    :param images:图像
    :param labels:标签
    :param batch_size:
    :param labels_nums:标签个数
    :param one_hot:是否将labels转为one_hot的形式
    :param shuffle:是否打乱顺序,一般train时shuffle=True,验证时shuffle=False
    :return:返回batch的images和labels
    '''
    min_after_dequeue = 200
    capacity = min_after_dequeue + 3 * batch_size  # 保证capacity必须大于min_after_dequeue参数值
    if shuffle:
        images_batch, labels_batch = tf.train.shuffle_batch([images,labels],
                                                                    batch_size=batch_size,
                                                                    capacity=capacity,
                                                                    min_after_dequeue=min_after_dequeue,
                                                                    num_threads=num_threads)
    else:
        images_batch, labels_batch = tf.train.batch([images,labels],
                                                        batch_size=batch_size,
                                                        capacity=capacity,
                                                        num_threads=num_threads)
    if one_hot:
        labels_batch = tf.one_hot(labels_batch, labels_nums, 1, 0)
    return images_batch,labels_batch

def read_records(filename,resize_height, resize_width,type=None):
    '''
    解析record文件:源文件的图像数据是RGB,uint8,[0,255],一般作为训练数据时,需要归一化到[0,1]
    :param filename:
    :param resize_height:
    :param resize_width:
    :param type:选择图像数据的返回类型
         None:默认将uint8-[0,255]转为float32-[0,255]
         normalization:归一化float32-[0,1]
         standardization:归一化float32-[0,1],再减均值中心化
    :return:
    '''
    # 创建文件队列,不限读取的数量
    filename_queue = tf.train.string_input_producer([filename])
    # create a reader from file queue
    reader = tf.TFRecordReader()
    # reader从文件队列中读入一个序列化的样本
    _, serialized_example = reader.read(filename_queue)
    # get feature from serialized example
    # 解析符号化的样本
    features = tf.parse_single_example(
        serialized_example,
        features={
            'image_raw': tf.FixedLenFeature([], tf.string),
            'height': tf.FixedLenFeature([], tf.int64),
            'width': tf.FixedLenFeature([], tf.int64),
            'depth': tf.FixedLenFeature([], tf.int64),
            'labels': tf.FixedLenFeature([], tf.string)
        }
    )
    tf_image = tf.decode_raw(features['image_raw'], tf.uint8)#获得图像原始的数据

    tf_height = features['height']
    tf_width = features['width']
    tf_depth = features['depth']
    # tf_label = tf.cast(features['labels'], tf.float32)
    tf_label = tf.decode_raw(features['labels'],tf.float32)

    # PS:恢复原始图像数据,reshape的大小必须与保存之前的图像shape一致,否则出错
    # tf_image=tf.reshape(tf_image, [-1])    # 转换为行向量
    tf_image=tf.reshape(tf_image, [resize_height, resize_width, 3]) # 设置图像的维度

    tf_label=tf.reshape(tf_label, [2]) # 设置图像的维度


    # 恢复数据后,才可以对图像进行resize_images:输入uint->输出float32
    # tf_image=tf.image.resize_images(tf_image,[224, 224])

    # [3]数据类型处理
    # 存储的图像类型为uint8,tensorflow训练时数据必须是tf.float32
    if type is None:
        tf_image = tf.cast(tf_image, tf.float32)
    elif type == 'normalization':  # [1]若需要归一化请使用:
        # 仅当输入数据是uint8,才会归一化[0,255]
        # tf_image = tf.cast(tf_image, dtype=tf.uint8)
        # tf_image = tf.image.convert_image_dtype(tf_image, tf.float32)
        tf_image = tf.cast(tf_image, tf.float32) * (1. / 255.0)  # 归一化
    elif type == 'standardization':  # 标准化
        # tf_image = tf.cast(tf_image, dtype=tf.uint8)
        # tf_image = tf.image.per_image_standardization(tf_image)  # 标准化(减均值除方差)
        # 若需要归一化,且中心化,假设均值为0.5,请使用:
        tf_image = tf.cast(tf_image, tf.float32) * (1. / 255) - 0.5  # 中心化

    # 这里仅仅返回图像和标签
    # return tf_image, tf_height,tf_width,tf_depth,tf_label
    return tf_image,tf_label


def create_records(image_dir,file, output_record_dir, resize_height, resize_width,shuffle,log=5):
    '''
    实现将图像原始数据,label,长,宽等信息保存为record文件
    注意:读取的图像数据默认是uint8,再转为tf的字符串型BytesList保存,解析请需要根据需要转换类型
    :param image_dir:原始图像的目录
    :param file:输入保存图片信息的txt文件(image_dir+file构成图片的路径)
    :param output_record_dir:保存record文件的路径
    :param resize_height:
    :param resize_width:
    PS:当resize_height或者resize_width=0是,不执行resize
    :param shuffle:是否打乱顺序
    :param log:log信息打印间隔
    '''
    # 加载文件,仅获取一个label
    labels_num=2
    images_list, labels_list=load_labels_file(file,labels_num,shuffle)

    writer = tf.python_io.TFRecordWriter(output_record_dir)
    for i, [image_name, labels] in enumerate(zip(images_list, labels_list)):
        image_path=os.path.join(image_dir,images_list[i])
        if not os.path.exists(image_path):
            print('Err:no image',image_path)
            continue
        image = read_image(image_path, resize_height, resize_width)
        image_raw = image.tostring()
        if i%log==0 or i==len(images_list)-1:
            print('------------processing:%d-th------------' % (i))
            print('current image_path=%s' % (image_path),'shape:{}'.format(image.shape),'labels:{}'.format(labels))
        # 这里仅保存一个label,多label适当增加"'label': _int64_feature(label)"项
        # label=labels[0]
        # labels_raw="0.12,0,15"
        labels_raw = np.asanyarray(labels,dtype=np.float32).tostring()

        example = tf.train.Example(features=tf.train.Features(feature={
            'image_raw': _bytes_feature(image_raw),
            'height': _int64_feature(image.shape[0]),
            'width': _int64_feature(image.shape[1]),
            'depth': _int64_feature(image.shape[2]),
            'labels': _bytes_feature(labels_raw),

        }))
        writer.write(example.SerializeToString())
    writer.close()

def disp_records(record_file,resize_height, resize_width,show_nums=4):
    '''
    解析record文件,并显示show_nums张图片,主要用于验证生成record文件是否成功
    :param tfrecord_file: record文件路径
    :return:
    '''
    # 读取record函数
    tf_image, tf_label = read_records(record_file,resize_height,resize_width,type='normalization')
    # 显示前4个图片
    init_op = tf.initialize_all_variables()
    with tf.Session() as sess:
        sess.run(init_op)
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)
        for i in range(show_nums):
            image,label = sess.run([tf_image,tf_label])  # 在会话中取出image和label
            # image = tf_image.eval()
            # 直接从record解析的image是一个向量,需要reshape显示
            # image = image.reshape([height,width,depth])
            print('shape:{},tpye:{},labels:{}'.format(image.shape,image.dtype,label))
            # pilimg = Image.fromarray(np.asarray(image_eval_reshape))
            # pilimg.show()
            show_image("image:{}".format(label),image)
        coord.request_stop()
        coord.join(threads)


def batch_test(record_file,resize_height, resize_width):
    '''
    :param record_file: record文件路径
    :param resize_height:
    :param resize_width:
    :return:
    :PS:image_batch, label_batch一般作为网络的输入
    '''
    # 读取record函数
    tf_image,tf_label = read_records(record_file,resize_height,resize_width,type='normalization')
    image_batch, label_batch= get_batch_images(tf_image,tf_label,batch_size=4,labels_nums=2,one_hot=False,shuffle=True)

    init = tf.global_variables_initializer()
    with tf.Session() as sess:  # 开始一个会话
        sess.run(init)
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(coord=coord)
        for i in range(4):
            # 在会话中取出images和labels
            images, labels = sess.run([image_batch, label_batch])
            # 这里仅显示每个batch里第一张图片
            show_image("image", images[0, :, :, :])
            print('shape:{},tpye:{},labels:{}'.format(images.shape,images.dtype,labels))

        # 停止所有线程
        coord.request_stop()
        coord.join(threads)


if __name__ == '__main__':
    # 参数设置

    resize_height = 224  # 指定存储图片高度
    resize_width = 224  # 指定存储图片宽度
    shuffle=True
    log=1000
    # 产生train.record文件
    image_dir='dataset_regression/images'
    train_labels = 'dataset_regression/train.txt'  # 图片路径
    train_record_output = 'dataset_regression/record/train.tfrecords'
    create_records(image_dir,train_labels, train_record_output, resize_height, resize_width,shuffle,log)
    train_nums=get_example_nums(train_record_output)
    print("save train example nums={}".format(train_nums))
    # 测试显示函数
    # disp_records(train_record_output,resize_height, resize_width)
    # 产生val.record文件
    image_dir='dataset_regression/images'
    val_labels = 'dataset_regression/val.txt'  # 图片路径
    val_record_output = 'dataset_regression/record/val.tfrecords'
    create_records(image_dir,val_labels, val_record_output, resize_height, resize_width,shuffle,log)
    val_nums=get_example_nums(val_record_output)
    print("save val example nums={}".format(val_nums))
    #
    # # 测试显示函数
    # # disp_records(train_record_output,resize_height, resize_width)
    # batch_test(val_record_output,resize_height, resize_width)

2.3 生成分割多个record文件 

      上述该代码只保存为单个record文件,当图片数据很多时候,会导致单个record文件超级巨大的情况,解决方法就是,将数据分成多个record文件保存,读取时,只需要将多个record文件的路径列表交给“tf.train.string_input_producer”,完整代码如下:

# -*-coding: utf-8 -*-
"""
    @Project: tf_record_demo
    @File   : tf_record_batchSize.py
    @Author : panjq
    @E-mail : [email protected]
    @Date   : 2018-07-27 17:19:54
    @desc   : 将图片数据保存为多个record文件
"""

##########################################################################

import tensorflow as tf
import numpy as np
import os
import cv2
import math
import matplotlib.pyplot as plt
import random
from PIL import Image


##########################################################################
def _int64_feature(value):
    return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
# 生成字符串型的属性
def _bytes_feature(value):
    return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
# 生成实数型的属性
def float_list_feature(value):
  return tf.train.Feature(float_list=tf.train.FloatList(value=value))

def show_image(title,image):
    '''
    显示图片
    :param title: 图像标题
    :param image: 图像的数据
    :return:
    '''
    # plt.figure("show_image")
    # print(image.dtype)
    plt.imshow(image)
    plt.axis('on')    # 关掉坐标轴为 off
    plt.title(title)  # 图像题目
    plt.show()

def load_labels_file(filename,labels_num=1):
    '''
    载图txt文件,文件中每行为一个图片信息,且以空格隔开:图像路径 标签1 标签2,如:test_image/1.jpg 0 2
    :param filename:
    :param labels_num :labels个数
    :return:images type->list
    :return:labels type->list
    '''
    images=[]
    labels=[]
    with open(filename) as f:
        for lines in f.readlines():
            line=lines.rstrip().split(' ')
            label=[]
            for i in range(labels_num):
                label.append(int(line[i+1]))
            images.append(line[0])
            labels.append(label)
    return images,labels

def read_image(filename, resize_height, resize_width):
    '''
    读取图片数据,默认返回的是uint8,[0,255]
    :param filename:
    :param resize_height:
    :param resize_width:
    :return: 返回的图片数据是uint8,[0,255]
    '''

    bgr_image = cv2.imread(filename)
    if len(bgr_image.shape)==2:#若是灰度图则转为三通道
        print("Warning:gray image",filename)
        bgr_image = cv2.cvtColor(bgr_image, cv2.COLOR_GRAY2BGR)

    rgb_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2RGB)#将BGR转为RGB
    # show_image(filename,rgb_image)
    # rgb_image=Image.open(filename)
    if resize_height>0 and resize_width>0:
        rgb_image=cv2.resize(rgb_image,(resize_width,resize_height))
    rgb_image=np.asanyarray(rgb_image)
    # show_image("src resize image",image)

    return rgb_image


def create_records(image_dir,file, record_txt_path, batchSize,resize_height, resize_width):
    '''
    实现将图像原始数据,label,长,宽等信息保存为record文件
    注意:读取的图像数据默认是uint8,再转为tf的字符串型BytesList保存,解析请需要根据需要转换类型
    :param image_dir:原始图像的目录
    :param file:输入保存图片信息的txt文件(image_dir+file构成图片的路径)
    :param output_record_txt_dir:保存record文件的路径
    :param batchSize: 每batchSize个图片保存一个*.tfrecords,避免单个文件过大
    :param resize_height:
    :param resize_width:
    PS:当resize_height或者resize_width=0是,不执行resize
    '''
    if os.path.exists(record_txt_path):
        os.remove(record_txt_path)

    setname, ext = record_txt_path.split('.')

    # 加载文件,仅获取一个label
    images_list, labels_list=load_labels_file(file,1)
    sample_num = len(images_list)
    # 打乱样本的数据
    # random.shuffle(labels_list)
    batchNum = int(math.ceil(1.0 * sample_num / batchSize))

    for i in range(batchNum):
        start = i * batchSize
        end = min((i + 1) * batchSize, sample_num)
        batch_images = images_list[start:end]
        batch_labels = labels_list[start:end]
        # 逐个保存*.tfrecords文件
        filename = setname + '{0}.tfrecords'.format(i)
        print('save:%s' % (filename))

        writer = tf.python_io.TFRecordWriter(filename)
        for i, [image_name, labels] in enumerate(zip(batch_images, batch_labels)):
            image_path=os.path.join(image_dir,batch_images[i])
            if not os.path.exists(image_path):
                print('Err:no image',image_path)
                continue
            image = read_image(image_path, resize_height, resize_width)
            image_raw = image.tostring()
            print('image_path=%s,shape:( %d, %d, %d)' % (image_path,image.shape[0], image.shape[1], image.shape[2]),'labels:',labels)
            # 这里仅保存一个label,多label适当增加"'label': _int64_feature(label)"项
            label=labels[0]
            example = tf.train.Example(features=tf.train.Features(feature={
                'image_raw': _bytes_feature(image_raw),
                'height': _int64_feature(image.shape[0]),
                'width': _int64_feature(image.shape[1]),
                'depth': _int64_feature(image.shape[2]),
                'label': _int64_feature(label)
            }))
            writer.write(example.SerializeToString())
        writer.close()

        # 用txt保存*.tfrecords文件列表
        # record_list='{}.txt'.format(setname)
        with open(record_txt_path, 'a') as f:
            f.write(filename + '\n')

def read_records(filename,resize_height, resize_width):
    '''
    解析record文件
    :param filename:保存*.tfrecords文件的txt文件路径
    :return:
    '''
    # 读取txt中所有*.tfrecords文件
    with open(filename, 'r') as f:
        lines = f.readlines()
        files_list=[]
        for line in lines:
            files_list.append(line.rstrip())

    # 创建文件队列,不限读取的数量
    filename_queue = tf.train.string_input_producer(files_list,shuffle=False)
    # create a reader from file queue
    reader = tf.TFRecordReader()
    # reader从文件队列中读入一个序列化的样本
    _, serialized_example = reader.read(filename_queue)
    # get feature from serialized example
    # 解析符号化的样本
    features = tf.parse_single_example(
        serialized_example,
        features={
            'image_raw': tf.FixedLenFeature([], tf.string),
            'height': tf.FixedLenFeature([], tf.int64),
            'width': tf.FixedLenFeature([], tf.int64),
            'depth': tf.FixedLenFeature([], tf.int64),
            'label': tf.FixedLenFeature([], tf.int64)
        }
    )
    tf_image = tf.decode_raw(features['image_raw'], tf.uint8)#获得图像原始的数据

    tf_height = features['height']
    tf_width = features['width']
    tf_depth = features['depth']
    tf_label = tf.cast(features['label'], tf.int32)
    # tf_image=tf.reshape(tf_image, [-1])    # 转换为行向量
    tf_image=tf.reshape(tf_image, [resize_height, resize_width, 3]) # 设置图像的维度
    # 存储的图像类型为uint8,这里需要将类型转为tf.float32
    # tf_image = tf.cast(tf_image, tf.float32)
    # [1]若需要归一化请使用:
    tf_image = tf.image.convert_image_dtype(tf_image, tf.float32)# 归一化
    # tf_image = tf.cast(tf_image, tf.float32) * (1. / 255)  # 归一化
    # [2]若需要归一化,且中心化,假设均值为0.5,请使用:
    # tf_image = tf.cast(tf_image, tf.float32) * (1. / 255) - 0.5 #中心化
    return tf_image, tf_height,tf_width,tf_depth,tf_label

def disp_records(record_file,resize_height, resize_width,show_nums=4):
    '''
    解析record文件,并显示show_nums张图片,主要用于验证生成record文件是否成功
    :param tfrecord_file: record文件路径
    :param resize_height:
    :param resize_width:
    :param show_nums: 默认显示前四张照片

    :return:
    '''
    tf_image, tf_height, tf_width, tf_depth, tf_label = read_records(record_file,resize_height, resize_width)  # 读取函数
    # 显示前show_nums个图片
    init_op = tf.initialize_all_variables()
    with tf.Session() as sess:
        sess.run(init_op)
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)
        for i in range(show_nums):
            image,height,width,depth,label = sess.run([tf_image,tf_height,tf_width,tf_depth,tf_label])  # 在会话中取出image和label
            # image = tf_image.eval()
            # 直接从record解析的image是一个向量,需要reshape显示
            # image = image.reshape([height,width,depth])
            print('shape:',image.shape,'label:',label)
            # pilimg = Image.fromarray(np.asarray(image_eval_reshape))
            # pilimg.show()
            show_image("image:%d"%(label),image)
        coord.request_stop()
        coord.join(threads)


def batch_test(record_file,resize_height, resize_width):
    '''
    :param record_file: record文件路径
    :param resize_height:
    :param resize_width:
    :return:
    :PS:image_batch, label_batch一般作为网络的输入
    '''

    tf_image,tf_height,tf_width,tf_depth,tf_label = read_records(record_file,resize_height, resize_width) # 读取函数

    # 使用shuffle_batch可以随机打乱输入:
    # shuffle_batch用法:https://blog.csdn.net/u013555719/article/details/77679964
    min_after_dequeue = 100#该值越大,数据越乱,必须小于capacity
    batch_size = 4
    # capacity = (min_after_dequeue + (num_threads + a small safety margin∗batchsize)
    capacity = min_after_dequeue + 3 * batch_size#容量:一个整数,队列中的最大的元素数

    image_batch, label_batch = tf.train.shuffle_batch([tf_image, tf_label],
                                                      batch_size=batch_size,
                                                      capacity=capacity,
                                                      min_after_dequeue=min_after_dequeue)

    init = tf.global_variables_initializer()
    with tf.Session() as sess:  # 开始一个会话
        sess.run(init)
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(coord=coord)
        for i in range(4):
            # 在会话中取出images和labels
            images, labels = sess.run([image_batch, label_batch])
            # 这里仅显示每个batch里第一张图片
            show_image("image", images[0, :, :, :])
            print(images.shape, labels)
        # 停止所有线程
        coord.request_stop()
        coord.join(threads)


if __name__ == '__main__':
    # 参数设置
    image_dir='dataset/train'
    train_file = 'dataset/train.txt'  # 图片路径
    output_record_txt = 'dataset/record/record.txt'#指定保存record的文件列表
    resize_height = 224  # 指定存储图片高度
    resize_width = 224  # 指定存储图片宽度
    batchSize=8000     #batchSize一般设置为8000,即每batchSize张照片保存为一个record文件
    # 产生record文件
    create_records(image_dir=image_dir,
                   file=train_file,
                   record_txt_path=output_record_txt,
                   batchSize=batchSize,
                   resize_height=resize_height,
                   resize_width=resize_width)

    # 测试显示函数
    disp_records(output_record_txt,resize_height, resize_width)

    # batch_test(output_record_txt,resize_height, resize_width)

3. 直接文件读取方式

    上面的都是将数据转存为tfrecord文件,训练时再读取,如果不想转为record文件,想直接读取图像文件进行训练,可以使用下面的方法:

    filename.txt

0.jpg 0
1.jpg 0
2.jpg 0
3.jpg 0
4.jpg 0
5.jpg 1
6.jpg 1
7.jpg 1
8.jpg 1
9.jpg 1

# -*-coding: utf-8 -*-
"""
    @Project: tf_record_demo
    @File   : tf_read_files.py
    @Author : panjq
    @E-mail : [email protected]
    @Date   : 2018-10-14 10:44:06
"""
import tensorflow as tf
import glob
import numpy as np
import os
import matplotlib.pyplot as plt

import cv2
def show_image(title, image):
    '''
    显示图片
    :param title: 图像标题
    :param image: 图像的数据
    :return:
    '''
    # plt.imshow(image, cmap='gray')
    plt.imshow(image)
    plt.axis('on')  # 关掉坐标轴为 off
    plt.title(title)  # 图像题目
    plt.show()


def tf_read_image(filename, resize_height, resize_width):
    '''
    读取图片
    :param filename:
    :param resize_height:
    :param resize_width:
    :return:
    '''
    image_string = tf.read_file(filename)
    image_decoded = tf.image.decode_jpeg(image_string, channels=3)
    # tf_image = tf.cast(image_decoded, tf.float32)
    tf_image = tf.cast(image_decoded, tf.float32) * (1. / 255.0)  # 归一化
    if resize_width>0 and resize_height>0:
        tf_image = tf.image.resize_images(tf_image, [resize_height, resize_width])
    # tf_image = tf.image.per_image_standardization(tf_image)  # 标准化[0,1](减均值除方差)
    return tf_image


def get_batch_images(image_list, label_list, batch_size, labels_nums, resize_height, resize_width, one_hot=False, shuffle=False):
    '''
    :param image_list:图像
    :param label_list:标签
    :param batch_size:
    :param labels_nums:标签个数
    :param one_hot:是否将labels转为one_hot的形式
    :param shuffle:是否打乱顺序,一般train时shuffle=True,验证时shuffle=False
    :return:返回batch的images和labels
    '''
    # 生成队列
    image_que, tf_label = tf.train.slice_input_producer([image_list, label_list], shuffle=shuffle)
    tf_image = tf_read_image(image_que, resize_height, resize_width)
    min_after_dequeue = 200
    capacity = min_after_dequeue + 3 * batch_size  # 保证capacity必须大于min_after_dequeue参数值
    if shuffle:
        images_batch, labels_batch = tf.train.shuffle_batch([tf_image, tf_label],
                                                            batch_size=batch_size,
                                                            capacity=capacity,
                                                            min_after_dequeue=min_after_dequeue)
    else:
        images_batch, labels_batch = tf.train.batch([tf_image, tf_label],
                                                    batch_size=batch_size,
                                                    capacity=capacity)
    if one_hot:
        labels_batch = tf.one_hot(labels_batch, labels_nums, 1, 0)
    return images_batch, labels_batch


def load_image_labels(filename):
    '''
    载图txt文件,文件中每行为一个图片信息,且以空格隔开:图像路径 标签1,如:test_image/1.jpg 0
    :param filename:
    :return:
    '''
    images_list = []
    labels_list = []
    with open(filename) as f:
        lines = f.readlines()
        for line in lines:
            # rstrip:用来去除结尾字符、空白符(包括\n、\r、\t、' ',即:换行、回车、制表符、空格)
            content = line.rstrip().split(' ')
            name = content[0]
            labels = []
            for value in content[1:]:
                labels.append(int(value))
            images_list.append(name)
            labels_list.append(labels)
    return images_list, labels_list


def batch_test(filename, image_dir):
    labels_nums = 2
    batch_size = 4
    resize_height = 200
    resize_width = 200
    image_list, label_list = load_image_labels(filename)
    image_list=[os.path.join(image_dir,image_name) for image_name in image_list]

    image_batch, labels_batch = get_batch_images(image_list=image_list,
                                                 label_list=label_list,
                                                 batch_size=batch_size,
                                                 labels_nums=labels_nums,
                                                 resize_height=resize_height, resize_width=resize_width,
                                                 one_hot=False, shuffle=True)
    with tf.Session() as sess:  # 开始一个会话
        sess.run(tf.global_variables_initializer())
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(coord=coord)
        for i in range(4):
            # 在会话中取出images和labels
            images, labels = sess.run([image_batch, labels_batch])
            # 这里仅显示每个batch里第一张图片
            show_image("image", images[0, :, :, :])
            print('shape:{},tpye:{},labels:{}'.format(images.shape, images.dtype, labels))

        # 停止所有线程
        coord.request_stop()
        coord.join(threads)


if __name__ == "__main__":
    image_dir = "./dataset/train"
    filename = "./dataset/train.txt"
    batch_test(filename, image_dir)



4.数据输入管道:Pipeline机制

    TensorFlow引入了tf.data.Dataset模块,使其数据读入的操作变得更为方便,而支持多线程(进程)的操作,也在效率上获得了一定程度的提高。使用tf.data.Dataset模块的pipline机制,可实现CPU多线程处理输入的数据,如读取图片和图片的一些的预处理,这样GPU可以专注于训练过程,而CPU去准备数据。

    参考资料:

https://blog.csdn.net/u014061630/article/details/80776975

(五星推荐)TensorFlow全新的数据读取方式:Dataset API入门教程:http://baijiahao.baidu.com/s?id=1583657817436843385&wfr=spider&for=pc

    Dataset支持一类特殊的操作:Transformation。一个Dataset通过Transformation变成一个新的Dataset。通常我们可以通过Transformation完成数据变换,打乱,组成batch,生成epoch等一系列操作。常用的Transformation有:map、batch、shuffle和repeat。

下面就分别进行介绍。

map

    使用 tf.data.Dataset.map,我们可以很方便地对数据集中的各个元素进行预处理。因为输入元素之间时独立的,所以可以在多个 CPU 核心上并行地进行预处理。map 变换提供了一个 num_parallel_calls参数去指定并行的级别。

dataset = dataset.map(map_func=parse_fn, num_parallel_calls=FLAGS.num_parallel_calls)

prefetch

    tf.data.Dataset.prefetch 提供了 software pipelining 机制。该函数解耦了 数据产生的时间 和 数据消耗的时间。具体来说,该函数有一个后台线程和一个内部缓存区,在数据被请求前,就从 dataset 中预加载一些数据(进一步提高性能)。prefech(n) 一般作为最后一个 transformation,其中 n 为 batch_size。 prefetch 的使用方法如下:

dataset = dataset.batch(batch_size=FLAGS.batch_size)
dataset = dataset.prefetch(buffer_size=FLAGS.prefetch_buffer_size) # last transformation
return dataset

repeat

    repeat的功能就是将整个序列重复多次,主要用来处理机器学习中的epoch,假设原先的数据是一个epoch,使用repeat(5)就可以将之变成5个epoch:

    如果直接调用repeat()的话,生成的序列就会无限重复下去,没有结束,因此也不会抛出tf.errors.OutOfRangeError异常

完整代码

# -*-coding: utf-8 -*-
"""
    @Project: fine tuning
    @File   : pipeline.py
    @Author : panjq
    @E-mail : [email protected]
    @Date   : 2018-11-17 20:18:54
"""
import tensorflow as tf
import numpy as np
import glob
import matplotlib.pyplot as plt

width=0
height=0
def show_image(title, image):
    '''
    显示图片
    :param title: 图像标题
    :param image: 图像的数据
    :return:
    '''
    # plt.figure("show_image")
    # print(image.dtype)
    plt.imshow(image)
    plt.axis('on')  # 关掉坐标轴为 off
    plt.title(title)  # 图像题目
    plt.show()


def tf_read_image(filename, label):
    image_string = tf.read_file(filename)
    image_decoded = tf.image.decode_jpeg(image_string, channels=3)
    image = tf.cast(image_decoded, tf.float32)
    if width>0 and height>0:
        image = tf.image.resize_images(image, [height, width])
    image = tf.cast(image, tf.float32) * (1. / 255.0)  # 归一化
    return image, label


def input_fun(files_list, labels_list, batch_size, shuffle=True):
    '''
    :param files_list:
    :param labels_list:
    :param batch_size:
    :param shuffle:
    :return:
    '''
    # 构建数据集
    dataset = tf.data.Dataset.from_tensor_slices((files_list, labels_list))
    if shuffle:
        dataset = dataset.shuffle(100)
    dataset = dataset.repeat()  # 空为无限循环
    dataset = dataset.map(tf_read_image, num_parallel_calls=4)  # num_parallel_calls一般设置为cpu内核数量
    dataset = dataset.batch(batch_size)
    dataset = dataset.prefetch(2)  # software pipelining 机制
    return dataset


if __name__ == '__main__':
    data_dir = 'dataset/image/*.jpg'
    # labels_list = tf.constant([0,1,2,3,4])
    # labels_list = [1, 2, 3, 4, 5]
    files_list = glob.glob(data_dir)
    labels_list = np.arange(len(files_list))
    num_sample = len(files_list)
    batch_size = 1
    dataset = input_fun(files_list, labels_list, batch_size=batch_size, shuffle=False)

    # 需满足:max_iterate*batch_size <=num_sample*num_epoch,否则越界
    max_iterate = 3
    with tf.Session() as sess:
        iterator = dataset.make_initializable_iterator()
        init_op = iterator.make_initializer(dataset)
        sess.run(init_op)
        iterator = iterator.get_next()
        for i in range(max_iterate):
            images, labels = sess.run(iterator)
            show_image("image", images[0, :, :, :])
            print('shape:{},tpye:{},labels:{}'.format(images.shape, images.dtype, labels))

 

5.参考资料:

[1]https://blog.csdn.net/happyhorizion/article/details/77894055  (五星推荐)

[2]https://blog.csdn.net/ywx1832990/article/details/78462582

[3]https://blog.csdn.net/csuzhaoqinghui/article/details/51377941

 

 

你可能感兴趣的:(机器学习,TensoFlow,深度学习)