hadoop学习——Hadoop核心组件

    下图展示了hadoop生态系统的核心组件。

                               

    下面来简单介绍各个组件的作用:

 HDFS(Hadoop distribute file system)——Hadoop生态系统的基础组件Hadoop分布式文件系统。它是其他一些工具的基础HDFS的机制是将大量数据分布到计算机集群上,数据一次写入,但可以多次读取用于分析。HDFS让Hadoop可以最大化利用磁盘。

 HBase—— 一个构建在HDFS之上的面向列的NoSql数据库,HBase用于对打量数据进行快速读取/写入。HBase将Zookeeper用于自身的管理,以保证其所有组件都正在运行。HBase使得Hadoop可以最大化利用内存。

 MapReduce——MapReduce是Hadoop的主要执行框架,它是一个用于分布式并行数据处理的编程模型,将作业分为mapping阶段和reduce阶段。开发人员谓Hadoop编写MapReduce作业,并使用HDFS中存储的数据,而HDFS可以保证快速的数据访问。鉴于MapReduce作业的特性,Hadoop以并行的方式将处理过程移向数据。MapReduce使得Hadoop可以最大化利用CPU。

 Zookeeper——Zookeeper是Hadoop的分布式协调服务。Zookeeper被设计成可以在机器集群上运行,是一个具有高度可用性的服务,用于Hadoop操作的管理,而且很多Hadoop组件都依赖它。

 Oozie—— Oozie是一个北极测很难过到Hadoop软件栈中的可扩展的Workflow系统。用于协调多个MapReduce作业的执行。它能够处理大量的复杂性,基于外部事件来管理执行。

 Pig——Pig是对MapReduce编程复杂性的抽象,Pig平台包含用于分析Hadoop数据集的执行环境和脚本语言(Pig Latin)。它的编译器将Pig Latin翻译为MapReduce程序序列。

 Hive——类似于SQL的高级语言,用于执行对存储在Hadoop中数据的查询,Hive允许不熟悉MapReduce的开发人员编写数据查询语句,它会将翻译为Hadoop中的MapReduce作业。类似于Pig。Hive是一个抽象层,适合于较熟悉SQL而不是java编程的数据库分析师。

Hadoop生态系统中还包含一些用于与其他企业级应用进行集成的框架,例如上图所示的Sqoop和Flume:

 Sqoop是一个连通性工具,用于在关系型数据库和数据仓库Hadoop之间移动数据。Sqoop利用数据库来描述导入/导出数据的模式,并使用MapReduce实现并行操作和容错。

 Fulme是一个分布式的、具有可靠性和高可用性的服务,用于从单独的机器上将大量数据高效的收集、聚合并移动到HDFS中。它给予一个简单灵活的架构,童工流式数据操所。它借助于简单可扩展的数据模型,允许将来自企业中多台机器上的数据移到Hadoop中。

我的个人博客地址 http://www.hehongbo.com/ 欢迎到我个人博客站交流学习。

你可能感兴趣的:(hadoop)