该适用于隧道型曲面,梯度下降法在狭长的隧道型函数上表现不佳,如下图所示
而动量法每次更新都吸收一部分上次更新的余势。这样主体方向的更新就得到了更大的保留,从而效果被不断放大。物理上这就像是推一个很重的铁球下山,因为铁球保持了下山主体方向的动量,所以在隧道上沿两侧震荡测次数就会越来越少。
v t = γ v t − 1 + η ∇ θ J ( θ ) v_{t} = \gamma v_{t-1} + \eta \nabla_{\theta}J(\theta) vt=γvt−1+η∇θJ(θ)
θ t = θ t − 1 − v t \theta_{t} = \theta_{t-1} - v_{t} θt=θt−1−vt
该算法的特点是自动调整学习率,适用于稀疏数据。梯度下降法在每一步对每一个参数使用相同的学习率,这种一刀切的做法不能有效的利用每一个数据集自身的特点。
Adagrad 是一种自动调整学习率的方法:
Adagrad的一个问题在于随着训练的进行,学习率快速单调衰减。Adadelta则使用梯度平方的移动平均来取代全部历史平方和。
定义移动平均: E [ g 2 ] t = γ E [ g 2 ] t − 1 + ( 1 − γ ) g t 2 E[g^{2}]_{t} = \gamma E[g^{2}]_{t-1} + (1-\gamma)g_{t}^{2} E[g2]t=γE[g2]t−1+(1−γ)gt2
Adadelta 的第一个版本也叫做 RMSprop,是Geoff Hinton独立于Adadelta提出来的。
如果把Adadelta里面梯度的平方和看成是梯度的二阶矩,那么梯度本身的求和就是一阶矩。Adam算法在Adadelta的二次矩基础之上又引入了一阶矩。而一阶矩,其实就类似于动量法里面的动量。
import torch
import torch.utils.data as Data
import torch.nn.functional as F
import matplotlib.pyplot as plt
torch.manual_seed(1) # reproducible
LR = 0.01
BATCH_SIZE = 32
EPOCH = 12
# fake dataset
x = torch.unsqueeze(torch.linspace(-1, 1, 1000), dim=1)
y = x.pow(2) + 0.1*torch.normal(torch.zeros(*x.size()))
# plot dataset
plt.scatter(x.numpy(), y.numpy())
plt.show()
torch_dataset = Data.TensorDataset(x, y)
loader = Data.DataLoader(dataset=torch_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=2,)
# 默认的 network 形式
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.hidden = torch.nn.Linear(1, 20) # hidden layer
self.predict = torch.nn.Linear(20, 1) # output layer
def forward(self, x):
x = F.relu(self.hidden(x)) # activation function for hidden layer
x = self.predict(x) # linear output
return x
# 为每个优化器创建一个 net
net_SGD = Net()
net_Momentum = Net()
net_RMSprop = Net()
net_Adam = Net()
nets = [net_SGD, net_Momentum, net_RMSprop, net_Adam]
# different optimizers
opt_SGD = torch.optim.SGD(net_SGD.parameters(), lr=LR)
opt_Momentum = torch.optim.SGD(net_Momentum.parameters(), lr=LR, momentum=0.8)
opt_RMSprop = torch.optim.RMSprop(net_RMSprop.parameters(), lr=LR, alpha=0.9)
opt_Adam = torch.optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.9, 0.99))
optimizers = [opt_SGD, opt_Momentum, opt_RMSprop, opt_Adam]
loss_func = torch.nn.MSELoss()
losses_his = [[], [], [], []] # 记录 training 时不同神经网络的 loss
for epoch in range(EPOCH):
print('Epoch: ', epoch)
for step, (b_x, b_y) in enumerate(loader): # for each training step
for net, opt, l_his in zip(nets, optimizers, losses_his):
output = net(b_x) # get output for every net
loss = loss_func(output, b_y) # compute loss for every net
opt.zero_grad() # clear gradients for next train
loss.backward() # backpropagation, compute gradients
opt.step() # apply gradients
l_his.append(loss.data.numpy()) # loss recoder
labels = ['SGD', 'Momentum', 'RMSprop', 'Adam']
for i, l_his in enumerate(losses_his):
plt.plot(l_his, label=labels[i])
plt.legend(loc='best')
plt.xlabel('Steps')
plt.ylabel('Loss')
plt.ylim((0, 0.2))
plt.show()