Yarn shuffle OOM错误分析及解决

前两周和同事一起分析了一下yarn shuffle oom的问题,最后他写了一个blog,我这里就不重复写了,把他的转载过来,他的blog写得都很有深度,推荐大家去看看。

原文地址:http://dj1211.com/?p=358

最近集群中一些任务经常在reduce端跑出Shuffle OOM的错误,具体错误如下

2015-03-09 16:19:13,646 WARN [main] org.apache.hadoop.mapred.YarnChild: Exception running child : 
org.apache.hadoop.mapreduce.task.reduce.Shuffle$ShuffleError: error in shuffle in fetcher#14
        at org.apache.hadoop.mapreduce.task.reduce.Shuffle.run(Shuffle.java:134)
        at org.apache.hadoop.mapred.ReduceTask.run(ReduceTask.java:376)
        at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:167)
        at java.security.AccessController.doPrivileged(Native Method)
        at javax.security.auth.Subject.doAs(Subject.java:396)
        at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1550)
        at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:162)
Caused by: java.lang.OutOfMemoryError: Java heap space
        at org.apache.hadoop.io.BoundedByteArrayOutputStream.(BoundedByteArrayOutputStream.java:56)
        at org.apache.hadoop.io.BoundedByteArrayOutputStream.(BoundedByteArrayOutputStream.java:46)
        at org.apache.hadoop.mapreduce.task.reduce.InMemoryMapOutput.(InMemoryMapOutput.java:63)
        at org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl.unconditionalReserve(MergeManagerImpl.java:297)
        at org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl.reserve(MergeManagerImpl.java:287)
        at org.apache.hadoop.mapreduce.task.reduce.Fetcher.copyMapOutput(Fetcher.java:411)
        at org.apache.hadoop.mapreduce.task.reduce.Fetcher.copyFromHost(Fetcher.java:341)
        at org.apache.hadoop.mapreduce.task.reduce.Fetcher.run(Fetcher.java:165)

Yarn shuffle OOM错误分析及解决_第1张图片

      先看一下基本流程,map端进行处理后将结果放在map端local路径中,map端不断心跳汇报给mrappmaster,在适当的阶段(另外可以写一个流程说明),reduce启动,reduce发送心跳给mrappmaster,获取已经结束的maptask对象。之后对已经结束的map进程的数据进行拉取俗称Shuffle,拉取是通过Fetcher线程进行的,随后进行sort。

      有关的几个重要参数

public static final String SHUFFLE_INPUT_BUFFER_PERCENT = “mapreduce.reduce.shuffle.input.buffer.percent”;     默认0.7

public static final String SHUFFLE_MEMORY_LIMIT_PERCENT = “mapreduce.reduce.shuffle.memory.limit.percent”;     默认0.25

public static final String SHUFFLE_MERGE_PERCENT = “mapreduce.reduce.shuffle.merge.percent”;     默认0.66

      个问题是在Fetcher过程中爆出的。首先解释一下参数,第一个参数SHUFFLE_INPUT_BUFFER_PERCENT是指在总的HeapSize中shuffle占得内存百分比我们总的HeapSize是1.5G,那大概Fetcher就是1.0G。 SHUFFLE_MEMORY_LIMIT_PERCENT是指的map copy过来的数据是放内存中还是直接写磁盘。 超过1.5G*0.7*0.25=250M的都放在磁盘中,其它开辟内存空间,放在内存中。 SHUFFLE_MERGE_PERCENT是指merge的百分比,超过这个百分比后停止fetcher,进行merge,merge到磁盘中。   

      跑出OOM后,调了下jvm参数,获取heapdump数据,根据MAT获取以下数据。数据如下:Yarn shuffle OOM错误分析及解决_第2张图片Yarn shuffle OOM错误分析及解决_第3张图片

      首先发现整体的内存并没有到1.5G。其次,看了下内存对象分布,byte数组占了很大比例,这也很正常,所有内存中的buffer都是以byte数组形式出现的。在对比一下byte数组大小,大于900M,这就有一个问题了,首先整体HeapSize是1.5G,old区大概是1个G,这时候如果byte数组是900M来一个100M+的拷贝,由于是大内存开辟,不会进入Young区,直接开辟内存空间到Old区,而Old区即使fullgc也没有那么多连续空间,所以分配失败,报OOM错误。这时,只是一个假设,调整Xmn参数,减小Young区内存大小,增大Old区进行测试,成功,印证了想法。

      但是对于我们跑任务调整jvm参数毕竟不现实,那么我们根据经验调整SHUFFLE_INPUT_BUFFER_PERCENT参数就可以了,调整为0.6即可解决问题。


你可能感兴趣的:(yarn)