数据分箱的常用方法

假设要将某个自变量的观测值分为k个分箱,一些常用的分箱方法有:1.无监督分箱(1)等宽分箱:将变量的取值范围分为k个等宽的区间,每个区间当作一个分箱。

(2)等频分箱:把观测值按照从小到大的顺序排列,根据观测的个数等分为k部分,每部分当作一个分箱,例如,数值最小的1/k比例的观测形成第一个分箱,等等。

(3)基于k均值聚类的分箱:使用第五章将介绍的k均值聚类法将观测值聚为k类,但在聚类过程中需要保证分箱的有序性:第一个分箱中所有观测值都要小于第二个分箱中的观测值,第二个分箱中所有观测值都要小于第三个分箱中的观测值,等等。

2.有监督分箱

在分箱时考虑因变量的取值,使得分箱后达到最小熵(minimumentropy)或最小描述长度(minimumdescriptionlength)。这里仅介绍最小熵。

(1)假设因变量为分类变量,可取值1,…,J。令pl(j)表示第l个分箱内因变量取值为j的观测的比例,l=1,…,k,j=1,…,J;那么第l个分箱的熵值为Jj=1[-pl(j)×log(pl(j))]。如果第l个分箱内因变量各类别的比例相等,即pl(1)=…=pl(J)=1/J,那么第l个分箱的熵值达到最大值;如果第l个分箱内因变量只有一种取值,即某个pl(j)等于1而其他类别的比例等于0,那么第l个分箱的熵值达到最小值。

(2)令rl表示第l个分箱的观测数占所有观测数的比例;那么总熵值为kl= 1rl×Jj=1[-pl(j)×log(pl(j ))]。需要使总熵值达到最小,也就是使分箱能够最大限度地区分因变量的各类别。

你可能感兴趣的:(数据挖掘)