- 深度学习学习指南
努力的Lorre
深度学习人工智能
本帖子将以本书的逻辑和顺序做一个梳理:CS基础->AI算法->模型压缩->异构计算->AI框架->AI编译器《DeepLearningSystems》(https://deeplearningsystems.ai/)CS基础推荐书单所需的编程语言(C/C++、Python)就不多讲了,数据结构算法也是大学基础课程,不多赘述。对于操作系统需要多了解,推荐多看一看《深入理解计算机系统》(传说中的面试圣
- 大模型·知识蒸馏·学习笔记
小先生00101
笔记人工智能神经网络机器学习自然语言处理深度学习语言模型
第一部分:核心概念入门1.1什么是知识蒸馏?核心问题:深度学习模型(如大型神经网络)虽然性能强大,但其巨大的参数量和计算需求使其难以部署到手机、嵌入式设备等资源受限的平台。核心思想:知识蒸馏是一种模型压缩和优化的技术,其灵感来源于“教师-学生”范式。我们先训练一个复杂但性能强大的“教师模型”,然后利用这个教师模型来指导一个轻量级的“学生模型”进行学习。生动的比喻(Hinton,2015):这个过程
- 大模型分布式训练deepspeed环境搭建
transformer变压器
分布式人工智能
1.deepspeed介绍1.1简介DeepSpeed是一个由微软开发的开源深度学习优化库,旨在提高大规模模型训练的效率和可扩展性。它通过多种技术手段来加速训练,包括模型并行化、梯度累积、动态精度缩放、本地模式混合精度等。DeepSpeed还提供了一些辅助工具,如分布式训练管理、内存优化和模型压缩等,以帮助开发者更好地管理和优化大规模深度学习训练任务。此外,deepspeed基于pytorch构建
- 教师-学生协同知识蒸馏机制在私有化系统中的融合路径:架构集成、训练范式与部署实践
观熵
人工智能DeepSeek私有化部署
教师-学生协同知识蒸馏机制在私有化系统中的融合路径:架构集成、训练范式与部署实践关键词:私有化部署、知识蒸馏、教师模型、学生模型、协同蒸馏、蒸馏训练、边缘部署、模型压缩、国产大模型、自监督微调摘要:随着国产大模型在企业私有化环境中的广泛部署,模型的压缩与推理性能优化成为核心挑战之一。本文聚焦“教师-学生协同知识蒸馏机制”在私有化系统中的实际融合路径,系统分析从教师模型选择、蒸馏数据构建、协同训练框
- AI原生应用性能优化:LLM模型压缩与加速方案
AI原生应用开发
AI-nativeai
AI原生应用性能优化:LLM模型压缩与加速方案关键词:AI原生应用、性能优化、LLM模型、模型压缩、加速方案摘要:本文聚焦于AI原生应用的性能优化,重点探讨了LLM(大语言模型)的模型压缩与加速方案。通过通俗易懂的语言,从背景知识入手,深入解释核心概念,阐述算法原理,给出实际代码案例,介绍应用场景、工具资源,分析未来趋势与挑战等,旨在让读者全面了解如何对LLM模型进行压缩与加速,以提升AI原生应用
- YOLO 在无人机视频流中的部署实践:从低延迟推理到边缘智能协同
YOLO在无人机视频流中的部署实践:从低延迟推理到边缘智能协同关键词:YOLOv8、无人机视频流、边缘部署、RTSP、低延迟推理、实时检测、JetsonOrin、RK3588、模型压缩摘要:随着无人机在巡检、安防、农业、物流等场景的广泛应用,如何将高效的目标检测模型部署在无人机或其边缘计算模块上,成为一项关键挑战。YOLO系列模型以其高性能、低延迟特性,已被广泛应用于实时视频流的智能感知任务。本文
- AI+法律,能不能帮我打官司?——聊聊自动化法律分析那些事儿
Echo_Wish
Python进阶人工智能自动化运维
AI+法律,能不能帮我打官司?——聊聊自动化法律分析那些事儿朋友们大家好,我是你们熟悉的Echo_Wish。今天咱们不讲图像识别、不聊大模型压缩,也不搞无人机降落——今天咱搞点“法理情”的结合,聊聊人工智能在法律分析中的自动化落地实践。这几年,“AI改变行业”是老生常谈了,但你知道吗?有一个行业,既复杂、规则化强、文本数据多、人才极度紧缺,又一直被认为是“最不可能被AI替代的职业”之一——那就是法
- 深度学习之模型压缩三驾马车:基于ResNet18的模型剪枝实战(1)
king of code porter
深度学习深度学习剪枝人工智能
一、背景:为什么需要模型剪枝?随着深度学习的发展,模型参数量和计算量呈指数级增长。以ResNet18为例,其在ImageNet上的参数量约为1100万,虽然在服务器端运行流畅,但在移动端或嵌入式设备上部署时,内存和计算资源的限制使得直接使用大模型变得困难。模型剪枝(ModelPruning)作为模型压缩的核心技术之一,通过删除冗余的神经元或通道,在保持模型性能的前提下显著降低模型大小和计算量,是解
- 深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏
king of code porter
深度学习深度学习剪枝人工智能
一、引言在深度学习中,我们训练出的神经网络往往非常庞大(比如像ResNet、YOLOv8、VisionTransformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄像头、机器人等资源受限的设备上。于是我们就想出了一个办法:给模型“瘦身”,让它又快又轻,还能保持不错的准确率。这就是——模型压缩!模型压缩有三种最常用的方法:模型剪枝模型量化知识蒸馏下面我们分别来通
- AI人工智能领域DALL·E 2的技术优化方向
AI大模型应用工坊
人工智能DALL·E2ai
AI人工智能领域DALL·E2的技术优化方向关键词:DALL·E2、文本到图像生成、扩散模型、计算效率、图像质量、多模态学习、模型压缩摘要:本文深入探讨了OpenAI的DALL·E2模型在人工智能领域的技术优化方向。我们将从模型架构、训练方法、计算效率、图像质量提升等多个维度进行分析,提出具体的优化策略和技术路线。文章不仅涵盖了理论基础,还提供了实际的代码实现和数学推导,帮助读者全面理解如何提升文
- FP16 混合精度在移动端 NPU 上的支持与性能压榨路径:架构差异 × 模型兼容 × 工程落地全解析
观熵
国产NPU×Android推理优化架构neo4j人工智能
FP16混合精度在移动端NPU上的支持与性能压榨路径:架构差异×模型兼容×工程落地全解析关键词FP16、混合精度、移动端NPU、国产芯片、TensorFlowLite、NNAPI、模型压缩、图优化、精度漂移、硬件加速、算子支持、高效推理摘要随着国产NPU芯片在手机、边缘端等设备的广泛部署,FP16(HalfPrecisionFloatingPoint)因其在计算效率、内存带宽、功耗方面的综合优势,
- 深度学习之模型压缩三驾马车:基于ResNet18的模型剪枝实战(3)
引言前面的文章《深度学习之模型压缩三驾马车:基于ResNet18的模型剪枝实战(1)》和《深度学习之模型压缩三驾马车:基于ResNet18的模型剪枝实战(2)》有做了相应的裁剪说明和实践,但是只是对其中的一个层进行采集的,这篇文章是记录对ResNet18中所有的残差层进行采集的一个过程。当然,前面也提到第一层是没有进行裁剪的,原因可以自己翻看前面的原因,后面也会有提到。一、ResNet18模型结构
- 机器学习小白必看:从零开始的模型压缩与优化
人工智能教程
机器学习人工智能自然语言处理cnn分类深度学习线性回归
在机器学习和深度学习领域,模型压缩与优化是一个非常重要且实用的话题。随着模型规模的不断增大,如何在保持模型性能的同时减少模型的存储和计算开销,成为了一个亟待解决的问题。本文将从零开始,带你了解模型压缩与优化的基本概念、常用方法以及如何在实际项目中应用这些技术。一、模型压缩与优化的背景在实际应用中,深度学习模型往往需要大量的计算资源和存储空间。例如,一个典型的卷积神经网络(CNN)可能包含数百万甚至
- 大模型解密之---模型蒸馏
forever0827
人工智能深度学习语言模型自然语言处理文心一言gpt-3机器学习
模型蒸馏:知识的传承艺术想象一下,你有一位学识渊博、经验丰富但年事已高、行动缓慢的“老教授”,也有一位年轻、敏捷、学习能力强的“研究生”。我们希望这位研究生能快速掌握老教授的毕生所学,但不是通过死记硬背教授的所有著作,而是通过聆听教授的“思维过程”来学习。这就是模型蒸馏的核心思想。描述(Description):模型蒸馏是一种模型压缩和知识迁移的技术。其目标是将一个大型、复杂、强大的“教师模型(T
- 算法在嵌入式端的部署与优化
早日退休!!!
硬件算法嵌入式硬件
算法在嵌入式端的部署与优化前言理论1.参考资源2.其他1.将深度学习模型移植到嵌入式端时,提高推理速度的方法2.深度学习模型移植到嵌入式端的主要流程3.假设将已经训练好的目标检测模型(比如YOLOv3)移植到树莓派4B这样一款嵌入式设备上,并且需要保证推理速度达到实时。具体流程如下4.在树莓派上使用ncnn推理引擎,可以采取以下措施提高推理速度5.先进行模型压缩再用推理模型部署是一种常见的深度学习
- AI算力网络与通信中量化技术的挑战与机遇
AI算力网络与通信
AI算力网络与通信原理AI人工智能大数据架构AI人工智能与大数据技术人工智能网络ai
AI算力网络与通信中量化技术的挑战与机遇关键词:AI算力网络、量化技术、通信优化、模型压缩、分布式计算摘要:随着AI应用的爆发式增长,算力需求与网络通信压力同步激增。量化技术作为连接AI算力网络与通信效率的关键桥梁,通过降低数据精度压缩模型规模、减少传输开销,成为解决“算力-通信”矛盾的核心技术。本文将从生活场景出发,用“快递网络”“语言翻译”等通俗比喻,拆解AI算力网络与量化技术的底层逻辑,结合
- 什么是知识蒸馏?如何做模型蒸馏?结合案例说明
一、什么是蒸馏?核心概念:在机器学习中,“蒸馏”指的是知识蒸馏。这是一种模型压缩技术,其核心思想是将一个大型、复杂、性能优越但计算成本高的模型(称为“教师模型”)所蕴含的“知识”或“智慧”,转移给一个小型、简单、计算效率高的模型(称为“学生模型”)。类比:就像化学中的蒸馏过程,通过加热和冷凝分离混合物中的组分,知识蒸馏试图从复杂教师模型的“知识混合物”中,提取出最精华、最核心的模式和关系,并将其“
- RAG模型效果优化全攻略:多维度策略优化RAG模型性能的关键技术与方法(RAG优化)
汀、人工智能
LLM工业级落地实践LLM技术汇总人工智能RAG智能体知识库self-ragrerank
:RAG在大模型实际落地的时候,存在一些问题,主要集中在以下方面:缺少垂直领域知识:虽然大模型压缩了大量的人类知识,但在垂直场景上明显存在短板,需要专业化的服务去解决特定问题。存在幻觉、应用有一定门槛:在大模型使用上有一些幻觉、合规问题,没有办法很好地落地,配套工作不足,缺乏现成的方案来管理非结构化文本、进行测试、运营和管理等。存在重复建设:各业务孤立摸索,资产无法沉淀,存在低水平重复建设,对公司
- AI持续学习模型压缩与加速方法大全
AI智能探索者
人工智能学习ai
AI持续学习模型压缩与加速方法大全关键词:模型压缩、模型加速、持续学习、知识蒸馏、模型剪枝、量化、轻量化架构摘要:本文全面解析AI持续学习场景下的模型压缩与加速技术。从核心概念到具体方法,结合生活案例、代码示例与实战场景,系统讲解剪枝、量化、知识蒸馏等主流技术的原理与应用,帮助读者理解如何在持续学习中平衡模型性能与资源消耗,最终实现高效、可扩展的AI系统。背景介绍目的和范围随着AI技术普及,模型规
- 【深度学习新浪潮】什么是混合精度分解?
小米玄戒Andrew
深度学习新浪潮深度学习人工智能算法大模型语言模型LLMs
混合精度分解是大模型压缩领域的一项核心技术,通过将模型参数或计算过程分解为不同精度的子单元,在保持性能的同时显著降低存储和计算成本。其核心思想是对模型中敏感度高、信息量大的部分采用高精度表示,而对冗余度高、敏感度低的部分采用低精度表示,从而在精度损失与压缩效率之间取得最优平衡。以下从技术原理、实现方法和典型案例三个维度展开分析:一、技术原理与核心机制1.混合精度的理论基础精度-冗余权衡:大模型中不
- 压缩感知解析
DuHz
算法机器学习信号处理开发语言人工智能数学建模线性代数
压缩感知解析理论基础与数学框架压缩感知理论由EmmanuelCandès、TerenceTao、DavidDonoho等数学家在2004年前后建立,该理论证明:对于在某种变换域中具有稀疏性的信号,可以通过远少于奈奎斯特采样率的随机测量实现完美重构。压缩感知的数学框架基本数学模型压缩感知的核心数学模型为:y=Φx+n\mathbf{y}=\boldsymbol{\Phi}\mathbf{x}+\ma
- 华为鸿蒙模型轻量化进阶:从「能用」到「好用」的生态进化之路
harmonyos
哈喽!我是小L,那个在鸿蒙端侧「用模型压缩技术撬动千亿设备」的女程序员~你知道吗?当轻量化模型遇见鸿蒙分布式能力,能让智能手表的健康监测精度提升20%,同时功耗降低30%!今天就来聊聊模型轻量化在鸿蒙生态中的「终极形态」——全场景协同、自进化模型、隐私增强,看看未来的端侧AI如何「聪明又贴心」!一、全场景协同:让模型「随需而变」(一)跨设备模型调度架构graphTDA[用户请求]-->B{设备类型
- 第39节:模型压缩技术:剪枝与量化
点我头像干啥
pytorch人工智能python
引言在人工智能和深度学习领域,模型规模的快速增长已成为一个显著趋势。从早期的简单神经网络到如今拥有数十亿参数的巨型模型(如GPT-3、BERT等),模型的复杂性不断提高,带来了更强大的性能,但同时也带来了计算资源消耗大、存储需求高、推理延迟长等一系列挑战。这些挑战严重限制了深度学习模型在资源受限环境(如移动设备、嵌入式系统和边缘计算场景)中的部署和应用。为了解决这些问题,模型压缩技术应运而生。模型
- 工业大模型全景解析:53个大模型案例深度探索
大模型猫叔
人工智能开源机器人数据库职场和发展chatgpt
工业场景要求严谨、容错率低,核心业务场景对模型准确率的要求达到95%以上、对幻觉的容忍率为0,因此通用基础大模型的工业知识往往不足以满足工业场景的应用需求。前排提示,文末有大模型AGI-CSDN独家资料包哦!根据沙丘智库发布的《[2024年中国工业大模型应用跟踪报告]》,工业大模型是指在通用基础大模型(例如文心一言、通义千问等)的基础上,结合行业&场景数据进行预训练和微调,并进行模型压缩(裁剪、蒸
- 【粉丝福利社】大模型轻量化:模型压缩与训练加速
愚公搬代码
愚公系列-送书福利社人工智能AGIAIAgentManus智能体
【技术大咖愚公搬代码:全栈专家的成长之路,你关注的宝藏博主在这里!】开发者圈持续输出高质量干货的"愚公精神"践行者——全网百万开发者都在追更的顶级技术博主!江湖人称"愚公搬代码",用七年如一日的精神深耕技术领域,以"挖山不止"的毅力为开发者们搬开知识道路上的重重阻碍!【行业认证·权威头衔】✔华为云天团核心成员:特约编辑/云享专家/开发者专家/产品云测专家✔开发者社区全满贯:CSDN博客&商业化双料
- 【大模型面试每日一题】Day 25:如何通过模型压缩技术将千亿模型部署到边缘设备?
是麟渊
LLMInterviewDaily面试每日一题面试深度学习人工智能职场和发展自然语言处理语言模型神经网络
【大模型面试每日一题】Day25:如何通过模型压缩技术将千亿模型部署到边缘设备?题目重现面试官:我们需要将千亿参数大模型(如PaLM)部署到边缘设备(如JetsonAGXOrin),请设计一个包含量化、蒸馏等压缩技术的部署方案,并说明需要重点考虑的硬件约束、延迟限制、精度损失等关键因素。大模型模型压缩量化蒸馏结构优化内存约束精度损失计算效率核心考点模型压缩技术理解能力:能否系统性分析量化、蒸馏等技
- 模型蒸馏(Knowledge Distillation)
PWRJOY
编程通识模型蒸馏深度学习
知识蒸馏(KnowledgeDistillation,简称KD)是一种深度学习中的模型压缩技术,其核心思想是将大型、复杂模型(教师模型)所学到的知识迁移到较小、结构简单的模型(学生模型)中,从而在保持性能的同时,降低计算和存储成本。核心概念在传统的深度学习训练中,模型的目标是通过交叉熵损失(Cross-EntropyLoss)来学习真实标签(HardLabels)。然而,知识蒸馏引入了一种新的学习
- 深度剖析Transformer架构:从原理到实战的全面指南
AI_DL_CODE
人工智能基础:AI基石人工智能应用transformer深度学习人工智能神经网络自注意力机制多模态学习稀疏注意力
摘要:本文系统阐述Transformer架构核心原理,深入剖析自注意力机制、多头注意力、位置编码等关键组件的运行逻辑与数学表达。结合自然语言处理、计算机视觉等多领域应用场景,提供BERT文本分类、ViT图像分类等完整代码实现及详细解析,通过可视化注意力机制增强理解。探讨稀疏注意力、模型压缩等高效化路径,以及多模态融合、硬件适配等前沿趋势。研究表明,Transformer凭借并行计算与强大表征能力革
- AI模型压缩与优化:如何在资源受限设备上运行大模型?
北辰alk
AI人工智能
前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站https://www.captainbed.cn/north文章目录一、引言:边缘计算的挑战与机遇二、模型压缩技术全景图2.1主要压缩技术分类2.2技术选型决策树三、核心优化技术详解3.1参数量化(Quantization)3.1.1基本原理3.1.2TensorFlowLite量化实践3.2模型修剪
- MATLAB2025新功能
MATLAB卡尔曼
matlab
截至2023年9月,MATLAB官方尚未公布2025版本的具体更新内容。根据历史更新规律和技术发展趋势,未来版本可能会在以下方面进行优化:AI与深度学习增强可能新增自动化模型压缩工具强化生成式AI模型支持改进的ONNX格式转换接口性能提升矩阵运算加速:C=αAB+βC\mathbf{C}=\alpha\mathbf{A}\mathbf{B}+\beta\mathbf{C}C=αAB+βC并行计算优
- ViewController添加button按钮解析。(翻译)
张亚雄
c
<div class="it610-blog-content-contain" style="font-size: 14px"></div>// ViewController.m
// Reservation software
//
// Created by 张亚雄 on 15/6/2.
- mongoDB 简单的增删改查
开窍的石头
mongodb
在上一篇文章中我们已经讲了mongodb怎么安装和数据库/表的创建。在这里我们讲mongoDB的数据库操作
在mongo中对于不存在的表当你用db.表名 他会自动统计
下边用到的user是表明,db代表的是数据库
添加(insert):
- log4j配置
0624chenhong
log4j
1) 新建java项目
2) 导入jar包,项目右击,properties—java build path—libraries—Add External jar,加入log4j.jar包。
3) 新建一个类com.hand.Log4jTest
package com.hand;
import org.apache.log4j.Logger;
public class
- 多点触摸(图片缩放为例)
不懂事的小屁孩
多点触摸
多点触摸的事件跟单点是大同小异的,上个图片缩放的代码,供大家参考一下
import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener
- 有关浏览器窗口宽度高度几个值的解析
换个号韩国红果果
JavaScripthtml
1 元素的 offsetWidth 包括border padding content 整体的宽度。
clientWidth 只包括内容区 padding 不包括border。
clientLeft = offsetWidth -clientWidth 即这个元素border的值
offsetLeft 若无已定位的包裹元素
- 数据库产品巡礼:IBM DB2概览
蓝儿唯美
db2
IBM DB2是一个支持了NoSQL功能的关系数据库管理系统,其包含了对XML,图像存储和Java脚本对象表示(JSON)的支持。DB2可被各种类型的企 业使用,它提供了一个数据平台,同时支持事务和分析操作,通过提供持续的数据流来保持事务工作流和分析操作的高效性。 DB2支持的操作系统
DB2可应用于以下三个主要的平台:
工作站,DB2可在Linus、Unix、Windo
- java笔记5
a-john
java
控制执行流程:
1,true和false
利用条件表达式的真或假来决定执行路径。例:(a==b)。它利用条件操作符“==”来判断a值是否等于b值,返回true或false。java不允许我们将一个数字作为布尔值使用,虽然这在C和C++里是允许的。如果想在布尔测试中使用一个非布尔值,那么首先必须用一个条件表达式将其转化成布尔值,例如if(a!=0)。
2,if-els
- Web开发常用手册汇总
aijuans
PHP
一门技术,如果没有好的参考手册指导,很难普及大众。这其实就是为什么很多技术,非常好,却得不到普遍运用的原因。
正如我们学习一门技术,过程大概是这个样子:
①我们日常工作中,遇到了问题,困难。寻找解决方案,即寻找新的技术;
②为什么要学习这门技术?这门技术是不是很好的解决了我们遇到的难题,困惑。这个问题,非常重要,我们不是为了学习技术而学习技术,而是为了更好的处理我们遇到的问题,才需要学习新的
- 今天帮助人解决的一个sql问题
asialee
sql
今天有个人问了一个问题,如下:
type AD value
A  
- 意图对象传递数据
百合不是茶
android意图IntentBundle对象数据的传递
学习意图将数据传递给目标活动; 初学者需要好好研究的
1,将下面的代码添加到main.xml中
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http:/
- oracle查询锁表解锁语句
bijian1013
oracleobjectsessionkill
一.查询锁定的表
如下语句,都可以查询锁定的表
语句一:
select a.sid,
a.serial#,
p.spid,
c.object_name,
b.session_id,
b.oracle_username,
b.os_user_name
from v$process p, v$s
- mac osx 10.10 下安装 mysql 5.6 二进制文件[tar.gz]
征客丶
mysqlosx
场景:在 mac osx 10.10 下安装 mysql 5.6 的二进制文件。
环境:mac osx 10.10、mysql 5.6 的二进制文件
步骤:[所有目录请从根“/”目录开始取,以免层级弄错导致找不到目录]
1、下载 mysql 5.6 的二进制文件,下载目录下面称之为 mysql5.6SourceDir;
下载地址:http://dev.mysql.com/downl
- 分布式系统与框架
bit1129
分布式
RPC框架 Dubbo
什么是Dubbo
Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案。其核心部分包含: 远程通讯: 提供对多种基于长连接的NIO框架抽象封装,包括多种线程模型,序列化,以及“请求-响应”模式的信息交换方式。 集群容错: 提供基于接
- 那些令人蛋痛的专业术语
白糖_
springWebSSOIOC
spring
【控制反转(IOC)/依赖注入(DI)】:
由容器控制程序之间的关系,而非传统实现中,由程序代码直接操控。这也就是所谓“控制反转”的概念所在:控制权由应用代码中转到了外部容器,控制权的转移,是所谓反转。
简单的说:对象的创建又容器(比如spring容器)来执行,程序里不直接new对象。
Web
【单点登录(SSO)】:SSO的定义是在多个应用系统中,用户
- 《给大忙人看的java8》摘抄
braveCS
java8
函数式接口:只包含一个抽象方法的接口
lambda表达式:是一段可以传递的代码
你最好将一个lambda表达式想象成一个函数,而不是一个对象,并记住它可以被转换为一个函数式接口。
事实上,函数式接口的转换是你在Java中使用lambda表达式能做的唯一一件事。
方法引用:又是要传递给其他代码的操作已经有实现的方法了,这时可以使
- 编程之美-计算字符串的相似度
bylijinnan
java算法编程之美
public class StringDistance {
/**
* 编程之美 计算字符串的相似度
* 我们定义一套操作方法来把两个不相同的字符串变得相同,具体的操作方法为:
* 1.修改一个字符(如把“a”替换为“b”);
* 2.增加一个字符(如把“abdd”变为“aebdd”);
* 3.删除一个字符(如把“travelling”变为“trav
- 上传、下载压缩图片
chengxuyuancsdn
下载
/**
*
* @param uploadImage --本地路径(tomacat路径)
* @param serverDir --服务器路径
* @param imageType --文件或图片类型
* 此方法可以上传文件或图片.txt,.jpg,.gif等
*/
public void upload(String uploadImage,Str
- bellman-ford(贝尔曼-福特)算法
comsci
算法F#
Bellman-Ford算法(根据发明者 Richard Bellman 和 Lester Ford 命名)是求解单源最短路径问题的一种算法。单源点的最短路径问题是指:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为 Edward F. Moore zu 也为这个算法的发展做出了贡献。
与迪科
- oracle ASM中ASM_POWER_LIMIT参数
daizj
ASMoracleASM_POWER_LIMIT磁盘平衡
ASM_POWER_LIMIT
该初始化参数用于指定ASM例程平衡磁盘所用的最大权值,其数值范围为0~11,默认值为1。该初始化参数是动态参数,可以使用ALTER SESSION或ALTER SYSTEM命令进行修改。示例如下:
SQL>ALTER SESSION SET Asm_power_limit=2;
- 高级排序:快速排序
dieslrae
快速排序
public void quickSort(int[] array){
this.quickSort(array, 0, array.length - 1);
}
public void quickSort(int[] array,int left,int right){
if(right - left <= 0
- C语言学习六指针_何谓变量的地址 一个指针变量到底占几个字节
dcj3sjt126com
C语言
# include <stdio.h>
int main(void)
{
/*
1、一个变量的地址只用第一个字节表示
2、虽然他只使用了第一个字节表示,但是他本身指针变量类型就可以确定出他指向的指针变量占几个字节了
3、他都只存了第一个字节地址,为什么只需要存一个字节的地址,却占了4个字节,虽然只有一个字节,
但是这些字节比较多,所以编号就比较大,
- phpize使用方法
dcj3sjt126com
PHP
phpize是用来扩展php扩展模块的,通过phpize可以建立php的外挂模块,下面介绍一个它的使用方法,需要的朋友可以参考下
安装(fastcgi模式)的时候,常常有这样一句命令:
代码如下:
/usr/local/webserver/php/bin/phpize
一、phpize是干嘛的?
phpize是什么?
phpize是用来扩展php扩展模块的,通过phpi
- Java虚拟机学习 - 对象引用强度
shuizhaosi888
JAVA虚拟机
本文原文链接:http://blog.csdn.net/java2000_wl/article/details/8090276 转载请注明出处!
无论是通过计数算法判断对象的引用数量,还是通过根搜索算法判断对象引用链是否可达,判定对象是否存活都与“引用”相关。
引用主要分为 :强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Wea
- .NET Framework 3.5 Service Pack 1(完整软件包)下载地址
happyqing
.net下载framework
Microsoft .NET Framework 3.5 Service Pack 1(完整软件包)
http://www.microsoft.com/zh-cn/download/details.aspx?id=25150
Microsoft .NET Framework 3.5 Service Pack 1 是一个累积更新,包含很多基于 .NET Framewo
- JAVA定时器的使用
jingjing0907
javatimer线程定时器
1、在应用开发中,经常需要一些周期性的操作,比如每5分钟执行某一操作等。
对于这样的操作最方便、高效的实现方式就是使用java.util.Timer工具类。
privatejava.util.Timer timer;
timer = newTimer(true);
timer.schedule(
newjava.util.TimerTask() { public void run()
- Webbench
流浪鱼
webbench
首页下载地址 http://home.tiscali.cz/~cz210552/webbench.html
Webbench是知名的网站压力测试工具,它是由Lionbridge公司(http://www.lionbridge.com)开发。
Webbench能测试处在相同硬件上,不同服务的性能以及不同硬件上同一个服务的运行状况。webbench的标准测试可以向我们展示服务器的两项内容:每秒钟相
- 第11章 动画效果(中)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- windows下制作bat启动脚本.
sanyecao2314
javacmd脚本bat
java -classpath C:\dwjj\commons-dbcp.jar;C:\dwjj\commons-pool.jar;C:\dwjj\log4j-1.2.16.jar;C:\dwjj\poi-3.9-20121203.jar;C:\dwjj\sqljdbc4.jar;C:\dwjj\voucherimp.jar com.citsamex.core.startup.MainStart
- Java进行RSA加解密的例子
tomcat_oracle
java
加密是保证数据安全的手段之一。加密是将纯文本数据转换为难以理解的密文;解密是将密文转换回纯文本。 数据的加解密属于密码学的范畴。通常,加密和解密都需要使用一些秘密信息,这些秘密信息叫做密钥,将纯文本转为密文或者转回的时候都要用到这些密钥。 对称加密指的是发送者和接收者共用同一个密钥的加解密方法。 非对称加密(又称公钥加密)指的是需要一个私有密钥一个公开密钥,两个不同的密钥的
- Android_ViewStub
阿尔萨斯
ViewStub
public final class ViewStub extends View
java.lang.Object
android.view.View
android.view.ViewStub
类摘要: ViewStub 是一个隐藏的,不占用内存空间的视图对象,它可以在运行时延迟加载布局资源文件。当 ViewSt