360全方位解读机器学习经典算法——聚类算法

聚类算法: 一种典型的无监督学习算法,主要用于将相似的样本自动归到一个类别中。在聚类算法中根 据样本之间的相似性,将样本划分到不同的类别中,对于不同的相似度计算方法,会得到不同的聚类结果,常用的相似度计算方法有欧式距离法。
传智播客全新python教程,为你360全方位解读机器学习经典算法!

一、 课程简介

360°解读机器学习经典算法——聚类算法,从基础算法到高阶应用全方位讲解,生动全彩,化繁为简,清晰直观解决实际问题,解析k-means(k-均值)基本算法并以全新视角解读其各种优化方式及谱聚类,DBSCAN ,SOM , AP聚类,视觉追踪等衍生算法,助力人工智能学习之路。

二、 课程特色|亮点

1,知识体系完备,从小白到大神各阶段读者均能学有所获。

2,生动形象,化繁为简,清晰明了解析算法

3,结合工作实践及分析应用,具备解决实际问题的能力

4,学习资源充足,多种资料配合后续学习

三、 课程内容介绍

第一章 算法原理

1- 课题导入

2- 原理讲解

3- 不同数据集的kmeans聚类实践

4- 工业车辆聚类分析综合实践

第二章 效果衡量标准

1- SSE

2- 肘方法

3- SC系数

4- CH系数

5- 算法优缺点

6- 图片压缩实践

7- 总结及作业

第三章 算法优化

1-Canopy配合初始聚类

2-k-means++

3-二分kmeans

4- Kernel Kmeans

5- K-medoids

6- ISODATA

7- MiniBatchKmeans

8- 小结

第四章 算法进阶

1- DBSCAN

2- 层次聚类

3- MeanShift聚类

4- AP聚类

5- SOM聚类

6- 谱聚类

7- 小结

8- Kmeans与DBSCAN聚类比较实践

第五章 综合实践

1- 客户价值分析实践

2- 文本文档分析实践

3- 总结与回顾

4- 学习提升+资料推荐

5- 综合实践-客户价值分析作业

课程资料:

360全方位解读机器学习经典算法——聚类算法_第1张图片

360°解读机器学习经典算法——聚类算法
视频:http://yun.itheima.com/course/525.html?stt
链接: https://pan.baidu.com/s/1Bf_2I0a9h763q7IgB-dyiQ  提取码:8je5 

你可能感兴趣的:(纯干货)