FCM 算法

一 FCM算法概述

 FCM算法的全称是模糊C均值聚类算法,和K-means算法同属于聚类算法,但却有着本质的区别,就其命名而言,模糊二字无疑是该算法的重点,下面就先简单介绍一下:
  1. 隶属度和模糊集

      隶属度函数用来描述元素x属于一个集合B的程度,假定为UB(x),其中x为B中的任意元素,UB(x)的取值范围为[0,1]。在隶属度函数的基础上,称空间上X={x}上的隶属度函数为一个模糊集合。

  2. 模糊聚类分析

      传统的聚类分析是把每个元素严格的划分到一个类中,属于硬划分。模糊聚类分析将聚类生成的每个簇均看做模糊集合,通过隶属度来确定聚类关系,是一种柔性划分,得到元素属于各个簇的不确定性程度,使得聚类结果更加准确灵活,因此,模糊聚类分析逐渐成为聚类分析的主流。

3.FCM

FCM算法是将N个L维向量分为C个模糊组,通过迭代不断更新隶属度以及聚类中心,最小化目标函数对数据进行聚类。

其中,目标函数为:
这里写图片描述
约束条件为:
这里写图片描述

根据隶属度的非负性,有
这里写图片描述

这里,m指的是模糊加权系数,它的值大于1;d(xi,vc)表示的是第i个数据点与第c个聚类中心的欧式距离;uic是隶属度矩阵中的元素,且[0,1];vc是对应于每个聚类的聚类中心。

为了求含有约束条件的目标函数的极值,引入拉格朗日因子构造新的目标函数:
这里写图片描述
对于目标函数求极值的最优化条件如下:
FCM 算法_第1张图片

从而得到隶属度和聚类中心的计算公式为:
FCM 算法_第2张图片

根据上述公式不断迭代求出满足条件的隶属度以及聚类中心。具体的FCM算法步骤如下:

首先,给定一个由N个L维向量组成的数据集X以及所要分得的类别个数C,自定义隶属度矩阵

(1)设定类别的个数C和模糊系数m;

(2)‚初始化隶属度矩阵且满足公式(2)中的归一化条件;

(3)根据公式(5)计算聚类中心;

(4)根据公式(4)更新隶属度矩阵;

(5)根据矩阵范数比较迭代的隶属度矩阵,如果这里写图片描述,迭代停止,否则返回(3)。

二 MATLAB实现

根据上述公式及步骤,采用MATLAB实现,具体如下:

(1)选取UCI数据库中的wine数据实现,代码:

clear all
clc;
%% 导入数据
load wine.txt;
cluster_n=6;

data = wine;
data(:,1) = [];
data(:,size(data,2)) = [];
data_n = size(data, 1); %数据的个数 
in_n = size(data, 2);% 数据维数

%% 定义变量
default_options = [10;    % 隶属度函数的幂次方
        300;    % 最大迭代次数
        1e-5;    %步长
        1];    % 判定条件

options = default_options;
expo = options(1);        % Exponent for U 隶属度函数的幂次方
max_iter = options(2);        % Max. iteration 最大迭代次数
min_impro = options(3);        % Min. improvement  最小进化步长
display = options(4);        % Display info or not 显示信息与否
obj_fcn = zeros(max_iter, 1);    % Array for objective function

tic
%% 初始化隶属度矩阵并归一
U = rand(cluster_n, data_n); %rand()产生随机矩阵 
col_sum = sum(U);
U = U./col_sum(ones(cluster_n, 1), :);%归一化

%% 开始迭代
for i = 1:max_iter,%迭代次数控制
    tic
    mf = U.^expo;      % MF matrix after exponential modification
    center = mf*data./((ones(size(data, 2), 1)*sum((mf')))'); % 建立新的聚类中心

       out = zeros(size(center, 1), size(data, 1));  %每个点到每个中心的距离,行数为中心数

        if size(center, 2) > 1,%样本的维数大于一执行以下程序
            for k = 1:size(center, 1),%给K赋值
                abc = ((data-ones(size(data,1),1) * center(k,:)).^2)';
                  out(k, :) = sqrt(sum(abc));%得到欧氏距离
            end
       else    % 1-D data
            for k = 1:size(center, 1),
                  out(k, :) = abs(center(k)-data)';
            end
        end

    obj_fcn(i) = sum(sum((out.^2).*mf));  % 目标函数
    tmp = out.^(-2/(expo-1));      % 根据新的隶属度矩阵求解公式求出
    U= tmp./(ones(cluster_n, 1)*sum(tmp));  % 新的隶属度矩阵

    if display, 
        fprintf('Iteration count = %d, obj. fcn = %f\n', i, obj_fcn(i));
        %输出迭代次数和函数的结果
    end
    % check termination condition
    if i > 1,  %进化步长控制
        if abs(obj_fcn(i) - obj_fcn(i-1)) < min_impro, break; end,
    end
    toc
end
toc

plot(U(1,:),'-ro');
grid on
hold on
plot(U(2,:),'-g*');
plot(U(3,:),'-b+');

ylabel('Membership degrees')
legend('FCM1','FCM2','FCM3','location','northeast');

toc

结果如下:
FCM 算法_第3张图片
(2)选取一张MRI图像,进行图像分割,代码如下:

clear all 
clc;

a=imread('MRI.jpg');
I=imnoise(a,'salt & pepper',0.05);
figure(1);           
 imshow(I);title('加噪图像');

[height,width,c]=size(a);
if c~=1
    a=rgb2gray(a);
end

a=double(a);
[row,column]=size(a); 
data = a(:);
data_n = size(data,1);

cluster_num = 4;
default_options = [2.0;    % 隶属度函数的幂次方
        300;    % 最大迭代次数
        1e-5;    %步长
        1];    % 判定条件

options = default_options;


expo = options(1);        % Exponent for U 隶属度函数的幂次方
max_iter = options(2);        % Max. iteration 最大迭代次数
min_impro = options(3);        % Min. improvement  最小进化步长
display = options(4);        % Display info or not 显示信息与否

obj_fcn = zeros(max_iter, 1);    % Array for objective function
membership = zeros(height,width,cluster_num);
center = zeros(cluster_num,1);

tic
% 初始化隶属度并归一
for i=1:height 
    for j=1:width
        member_sum=0;
        for k=1:cluster_num
            membership(i,j,k)=rand();
            member_sum = member_sum + membership(i,j,k);
        end        
        for p =1:cluster_num
            membership(i,j,p) = membership(i,j,p) / member_sum;
        end
    end
end

tic
for i = 1:max_iter,%迭代次数控制
    mf = membership.^expo;     
    %%%%%%%%建立聚类中心
    for m = 1:cluster_num
        to = 0;
        tp =0;
        for j = 1:height
            for t = 1:width
                to = to + membership(j,t,m) * a(j,t);
                tp = tp + membership(j,t,m);
            end
        end
        center(m,1) = to / tp; 
    end

    %%%%%%%得到欧式距离以及目标函数
    out = zeros(height,width,cluster_num);
    for m =1:height
        for j =1:width
            for t = 1:cluster_num
                out(m,j,t) = abs(a(m,j) - center(t,1));
                obj_fcn(i) = obj_fcn(i) + (membership(m,j,t).^expo) * (out(m,j,t).^2);
            end
        end
    end

    for m = 1:height
        for j = 1:width
            for r = 1:cluster_num
                top =0;
                for t = 1:cluster_num
                    top = top + (out(m,j,r) / out(m,j,t)).^(expo - 1);
                end
                membership(m,j,r) = 1 / top;
            end
        end
    end

    %%%%%%归一化隶属度
    for m=1:height 
        for j = 1:width
            member_sum = 0;
            for k = 1:cluster_num
                member_sum = member_sum + membership(m,j,k);
            end
            for p = 1:cluster_num
                membership(m,j,p) = membership(m,j,p) / member_sum;
            end
        end
    end

     if display, 
        fprintf('Iteration count = %d, obj. fcn = %f\n', i, obj_fcn(i));
        %输出迭代次数和函数的结果
    end
    % check termination condition
    if i > 1,  %进化步长控制
        if abs(obj_fcn(i) - obj_fcn(i-1)) < min_impro, break; end,
    end
end
toc

%%%%%%证得如自定义图像中的MCR不能计算,故在此继续尝试直接用newing和A相比较

A = ones(height,width,1);
for i = 1:height
    for j = 1:width
        if (fix(a(i,j) / 85) == 1)
            A(i,j,1) = 2;
        end
        if (fix(a(i,j) / 85) == 2)
            A(i,j,1) = 3;
        end
        if (fix(a(i,j,1) / 85) == 3)
            A(i,j,1) = 4;
        end
    end
end    
A = reshape(A,1,data_n);

  newing = zeros(row,column);
for i=1:row
    for j=1:column         
        maxmembership=membership(i,j,1);
        index=1;
        for k=2:cluster_num            
            if(membership(i,j,k)>maxmembership)
                maxmembership=membership(i,j,k);
                index=k;
            end
        end
        newing(i,j) = round(255 * (1-(index-1)/(cluster_num-1)));
    end 
end

B = reshape(newing,1,data_n);
b = fix((max(B) - B(1,1)) / cluster_num);
for i = 2:data_n
    if B(1,i) == B(1,1)
        B(1,i) = 1;
    elseif (fix(B(1,i) / b) == 2)
        B(1,i) = 2;
    elseif (fix(B(1,i) / b)  == 3)
        B(1,i) = 3;
    else
        B(1,i) = 4;
    end
end
B(1,1) = 1;

sum = 0;
for i = 1:data_n
    if ( A(1,i) ~= B(1,i))
        sum = sum + 1;
    end
end
MCR = sum / data_n;
fprintf('MCR = %d\n',MCR);

S = 0;
for i = 1:data_n
    S = S + (A(1,i) - B(1,i)).^2;
end

RMS = sqrt(S / (data_n * (data_n -1)));
fprintf('RMS = %d\n',RMS);

figure(2);
imshow((uint8(newing)));
title('FCM分割后的图像');   

结果如下:
FCM 算法_第4张图片
FCM 算法_第5张图片

转载自: http://www.cnblogs.com/ybjourney/p/4735335.html

你可能感兴趣的:(机器学习matlab)