PostgreSQL 物流 O2O 路径规划 物流调度
摘要: 背景 物流行业是被电子商务催生的产业之一。 快件的配送和揽件的调度算法是物流行业一个非常重要的课题,直接关系到配送或揽件的时效,以及物流公司的运作成本。 好的算法,可以提高时效,降低成本,甚至可以更好的调动社会资源,就像滴滴打车一样,也许能全民参与哦。 以后也许上班路途还
物流行业是被电子商务催生的产业之一。
快件的配送和揽件的调度算法是物流行业一个非常重要的课题,直接关系到配送或揽件的时效,以及物流公司的运作成本。
好的算法,可以提高时效,降低成本,甚至可以更好的调动社会资源,就像滴滴打车一样,也许能全民参与哦。
以后也许上班路途还能顺路提供快递服务呢。
本文将以物流行业为例,给大家分析一下PostgreSQL与Greenplum在地理位置信息处理,最佳路径算法,机器学习等方面的物流行业应用方法。
物流做的事情很简单,寄件,送件。
物流环节的要素有几个,都与位置有关
揽件员
PS,揽件人通常不是直接将货收到仓库,而是网点。所以网点到仓库也是需要调度的,本文未涉及。
调度方法与配送差不太多。
货物
仓库
运输工具
派件员
收件人
如果引入时间属性,则更具有想象空间,例如前面提到的像滴滴打车一样,也许能全民参与哦。
我们这里先从简单的入手,假设现在只关心位置信息。
货物从寄件人到揽件员,通常是预约的操作,而且寄件人可以直接去网点办理寄件,所以没有太多的算法在里面。
如果派件和揽件混合在一起的话,可以用KNN算法来解决,再结合派件点路径调度,选出最佳的揽件人。
例如,寄件人当前位置,与快递员调度的下一个位置,进行KNN运算,因此B来揽件是成本最低的。
假设上图为仓库的位置,两个仓库之间如果开通了线路的话,就以线段连接起来。
每个仓库负责一个区域,这个区域是一个几何的图形。
通过寄件人和收件人的位置,与仓库的区域进行点面判断,找出寄件人的仓库与收件人的仓库。
快件为点,仓库为面,寄件时根据寄件人填写的寄件和收件信息转换为寄件和收件两个经纬度,通过这两个经纬度与快递公司的仓库表进行点面包含的判断匹配,就可以找出快件对应的起点和重点的仓库。
点面判断
有了源和目标就可以通过pgrouting提供的各种最佳路径算法算出每件货物的最佳路径。
本文后面会有demo来讲解如何使用pgrouting计算最佳路径。
仓库之间的货车的工作就简单了,装满就走 或 分波次(考虑到时效) 的原则,负责好两个直连节点的来回运输,并不是一辆车完成整个货物的从起点到终点的运输。
例如负责A和B之间线路的货车,只在AB之间跑运输。
货物在抵达目标仓库后,首先要将货物分拣到派件的网点。
其实也是一个点面判断的过程,网点覆盖的派件范围为面,快件则为点,点面判断找出对应的网点。
从仓库到网点,也可以使用仓库建流转的原理,计算出最佳线路。货车只负责2个网点之间的货物流转即可。
进入派件的流程,也就是货物在抵达收件人手中的最后一公里要做的事情。
为了更好的实现派件调度,需要对快件进行聚合操作,根据位置进行聚合。
原理和前面类似,还是要做点面判断,只是目标更加精确,例如精确到小区或者很小的区域。
派件除了要考虑快件的目的地(聚合后的),还需要考虑快件的体积,重量,以及快递员的运货能力(体积与重量) 。
假设一个网点当前收到的快件覆盖了以下需要派送的点(聚合后的),同时每个点的货物体积总和如数字所表示。
路径规划与前面不一样的地方,这里规划的是多个点作为目标。
多点目标的最佳路径,用意是确保相邻目标的连续性,确保切分不同网点的快件后,拿到快件的人跑的是还是相邻的点。
例如中心是网点的位置,其他点是目标位置,目标位置的数字是体积,假设每个快递员一次运输的体积是7000,虚线是一个快递员拿到的一趟的快件。
这种方法确保了每趟的快件是连续的。
多点目标的最佳路径规划,在本文后面的部分也会有DEMO。
如何将地址转换成坐标,不在本文的讨论范围,很多做导航的公司都可以输出这个能力。
但是作为快递公司,还有一种方法可以获得精确的坐标信息,例如快递员的手持GPS终端,收件时扫个条码,同时上报位置信息。
有了一定的基数后,通过文本分析和机器学习,也可以输出地址转坐标的能力。
如果基数非常庞大,可以选择基于PostgreSQL的Greenplum数据仓库,进行文本分析与机器学习(支持MADlib库,支持R)。
Greenplum支持文本分析,支持地理位置信息处理,支持MADlib机器学习库,还支持R语言自定义函数,python函数,支持分布式并行计算。 最重要的是它开源,绝对是有文本和地理位置分析需求的用户最好的选择。
以仓库之间的数据流转为例
需要用到PostgreSQL数据库的PostGIS与pgrouting。
http://workshop.pgrouting.org/chapters/topology.html
基础数据需求,用来表示开通了运输航线的仓库之间的线段数据,公里数据。
Road link ID (gid) 唯一,指路段号
Road class (class_id)
Road link length (length),长度,公里数
Road name (name),路名
Road geometry (the_geom),线段(可以是多点线段,也可以是双点线段)
假设表名为ways,里面存储的就是仓库之间的线段信息
Table "public.ways"
Column | Type | Modifiers
----------+---------------------------+-----------
gid | bigint |
class_id | integer | not null
length | double precision |
name | character(200) |
osm_id | bigint |
the_geom | geometry(LineString,4326) |
Indexes:
"ways_gid_idx" UNIQUE, btree (gid)
"geom_idx" gist (the_geom)
要生成最佳路径,首先要生成合法的拓扑,否则怎么生成路径呢?
生成拓扑前,需要添加两个字段,用来存储线段的首尾编号
-- Add "source" and "target" column
ALTER TABLE ways ADD COLUMN "source" integer;
ALTER TABLE ways ADD COLUMN "target" integer;
调用pgr_createTopology生成拓扑,注意就是生成线段的首位编号的过程
pgr_createTopology(
'', -- 需要生成拓扑的表名
float tolerance, -- 容错值,例如线段的端不能完全吻合时,允许多少误差,单位一般为角度或公里数
'' , -- 线段列名
'' ) -- gid
例如,ABC三条线段,其中B线段的两端都没有和AC完全吻合,误差分别为1米和10米,所以需要设置容错。
生成线段,实际上就是设置source和target的ID,设置完后,可能就变成这样的了
例子
-- Run topology function
SELECT pgr_createTopology('ways', 0.00001, 'the_geom', 'gid');
2. 生成最佳路径
pgrouting支持的最佳路径算法很多
http://docs.pgrouting.org/2.2/en/doc/index.html
这里以Shortest Path A*和Shortest Path Dijkstra为例,介绍如何生成最佳路径
http://workshop.pgrouting.org/chapters/shortest_path.html
如果仓库之间的线段支持双向,回来的成本是多少?
如果回程要考虑堵车更多一点,那么成本就不仅仅是公里数了,还需要加上堵车的成本。
本例加上回程成本的字段,并设置为公里数,也就是说这条线段支持回程。
ALTER TABLE ways ADD COLUMN reverse_cost double precision;
UPDATE ways SET reverse_cost = length;
2.1 Shortest Path Dijkstra算法举例
调用
pgr_costResult[] pgr_dijkstra(
text sql, -- 用于计算最佳路径的数据来源, 用SQL表示, 例如
-- SELECT id (gid), source (线段起点id), target (线段重点ID), cost (起点到重点的成本) [,reverse_cost (重点到起点的成本)] FROM edge_table
integer source, -- 规划路径的起点
integer target, -- 规划路径的终点
boolean directed, -- if the graph is directed
boolean has_rcost -- if true, the reverse_cost column of the SQL generated set of rows will be used for the cost of the traversal of the edge in the opposite direction.
);
返回多行,即路径。
a set of pgr_costResult (seq (序号), id1 (起点id), id2 (目标ID, -1表示终点), cost (这一段的成本)) rows, that make up a path.
例子
从30到60的最佳路径
SELECT seq, id1 AS node, id2 AS edge, cost FROM pgr_dijkstra('
SELECT gid AS id,
source::integer,
target::integer,
length::double precision AS cost
FROM ways',
30, 60, false, false);
seq | node | edge | cost
-----+------+------+---------------------
0 | 30 | 53 | 0.0591267653820616
1 | 44 | 52 | 0.0665408320949312
2 | 14 | 15 | 0.0809556879332114
...
6 | 10 | 6869 | 0.0164274192597773
7 | 59 | 72 | 0.0109385169537801
8 | 60 | -1 | 0
(9 rows)
2.2 Shortest Path A*算法举例
与Shortest Path Dijkstra算法类似,只是SQL需要用到每条线段的起点和重点的坐标,其他参数和pgr_dijkstra都一样。
ALTER TABLE ways ADD COLUMN x1 double precision;
ALTER TABLE ways ADD COLUMN y1 double precision;
ALTER TABLE ways ADD COLUMN x2 double precision;
ALTER TABLE ways ADD COLUMN y2 double precision;
UPDATE ways SET x1 = ST_x(ST_PointN(the_geom, 1)); -- 线段起点坐标x
UPDATE ways SET y1 = ST_y(ST_PointN(the_geom, 1)); -- 线段起点坐标y
UPDATE ways SET x2 = ST_x(ST_PointN(the_geom, ST_NumPoints(the_geom))); -- 线段终点坐标x
UPDATE ways SET y2 = ST_y(ST_PointN(the_geom, ST_NumPoints(the_geom))); -- 线段终点坐标y
调用
pgr_costResult[] pgr_astar(
sql text, -- SELECT id, source, target, cost, x1, y1, x2, y2 [,reverse_cost] FROM edge_table ,包含了起点和重点坐标,计算速度比Shortest Path A*算法快一点
source integer,
target integer,
directed boolean,
has_rcost boolean
);
返回结果与pgr_dijkstra一样
a set of pgr_costResult (seq, id1, id2, cost) rows, that make up a path.
例子
SELECT seq, id1 AS node, id2 AS edge, cost FROM pgr_astar('
SELECT gid AS id,
source::integer,
target::integer,
length::double precision AS cost,
x1, y1, x2, y2
FROM ways',
30, 60, false, false);
结果
seq | node | edge | cost
-----+------+------+---------------------
0 | 30 | 53 | 0.0591267653820616
1 | 44 | 52 | 0.0665408320949312
2 | 14 | 15 | 0.0809556879332114
...
6 | 10 | 6869 | 0.0164274192597773
7 | 59 | 72 | 0.0109385169537801
8 | 60 | -1 | 0
(9 rows)
2.3 生成多目标最佳路径
在使用导航时,我们可以选择途径点,这其实就是多目标规划的一种常见场景。
例如从杭州到万载,途径江山去丈母娘家休息一晚。
本例使用的算法是Multiple Shortest Paths with kDijkstra
用法与kDijkstra类似,只有一个参数不一样,就是targets是使用数组表示的。
生成分段成本
pgr_costResult[] pgr_kdijkstraCost(text sql, integer source,
integer[] targets, boolean directed, boolean has_rcost);
例子
从10出发,到达60,70,80
SELECT seq, id1 AS source, id2 AS target, cost FROM pgr_kdijkstraCost('
SELECT gid AS id,
source::integer,
target::integer,
length::double precision AS cost
FROM ways',
10, array[60,70,80], false, false);
seq | source | target | cost
-----+--------+--------+------------------
0 | 10 | 60 | 13.4770181770774
1 | 10 | 70 | 16.9231630493294
2 | 10 | 80 | 17.7035050077573
(3 rows)
生成路径
pgr_costResult[] pgr_kdijkstraPath(text sql, integer source,
integer[] targets, boolean directed, boolean has_rcost);
例子
从10出发,到达60,70,80
SELECT seq, id1 AS path, id2 AS edge, cost FROM pgr_kdijkstraPath('
SELECT gid AS id,
source::integer,
target::integer,
length::double precision AS cost
FROM ways',
10, array[60,70,80], false, false);
seq | path | edge | cost
-----+------+------+---------------------
0 | 60 | 3163 | 0.427103399132954
1 | 60 | 2098 | 0.441091435851107
...
40 | 60 | 56 | 0.0452819891352444
41 | 70 | 3163 | 0.427103399132954
42 | 70 | 2098 | 0.441091435851107
...
147 | 80 | 226 | 0.0730263299529259
148 | 80 | 227 | 0.0741906229622583
(149 rows)
小结
本文用到哪些技术
-
点面判断
用法请参考PostGIS手册
-
点面判断后,按面进行聚合
-
路径规划
具体的用法请参考pgrouting的手册以及workshop
-
支持哪些最优算法
非常多,具体的用法请参考pgrouting的手册以及workshop
-
UDF
PostgreSQL支持python, R, C等各种自定义函数的语言
-
机器学习
PostgreSQL与Greenplum都支持MADlib库,对于Greenplum的R用户,可以使用Greenplum进行隐式的并行数据挖掘,处理大数据量的挖掘很有帮助
-
地址转换成坐标
-
聚类算法
如果小区信息在数据库中存储的不是面,而是点,那么派件的点面判断,可以用PostgreSQL或者Greenplum的K-Means聚类算法,将快件与小区进行聚合,达到同样的目的。
用法举例:
http://blog.163.com/digoal@126/blog/static/163877040201571745048121/
SELECT kmeans(ARRAY[x, y, z], 10) OVER (), * FROM samples;
SELECT kmeans(ARRAY[x, y], 2, ARRAY[0.5, 0.5, 1.0, 1.0]) OVER (), * FROM samples;
SELECT kmeans(ARRAY[x, y, z], 2, ARRAY[ARRAY[0.5, 0.5], ARRAY[1.0, 1.0]]) OVER (PARTITION BY group_key), * FROM samples;
第一个参数是需要参与聚类分析的数组,第二个参数是最终分成几类(输出结果时类是从0开始的,如分2类的话,输出是0和1)。
第三个参数是种子参数,可以是1维或2维数组,如果是1维数组,必须是第一个参数的元素个数乘以第二个元素的值。(可以认为是给每一个类分配一个种子)。
我们需要指定的种子数组,即网点覆盖的小区或写字楼等组成的点值数组。
PostgreSQL在地理位置处理的领域一直处于非常领先的地位,用户群体也非常的庞大,PostGIS和pgrouting只是这个领域的两插件。
以前还写过一篇point cloud的数据处理相关文章,有兴趣的童鞋可以参考如下
https://yq.aliyun.com/articles/57095
PostGIS和pgrouting在阿里云的RDS PG数据库都有提供,欢迎使用。
祝大家玩得开心,欢迎随时来 阿里云促膝长谈 业务需求 ,恭候光临。
阿里云的小伙伴们加油,努力做 最贴地气的云数据库 。
扫我,和云栖在线交流
【云栖快讯】首届阿里巴巴在线技术峰会,将于7月19日-21日20:00-21:30在线举办。峰会邀请到阿里集团9位技术大V,分享电商架构、安全、数据处理、数据库、多应用部署、互动技术、Docker持续交付与微服务等一线实战经验,解读最新技术在阿里集团的应用实践。 详情请点击
评论文章(
0)
(0)
(0)
-
分享到:
-
相关文章
- PostgreSQL 索引扫描offset内核优化 - …
- PostgreSQL 数据访问 offset 的质变 c…
- PostgreSQL 老湿机图解平安科技遇到的垃圾回收"…
- 从传统物流模式到“互联网+物流”
你可能感兴趣的:(大数据,算法)
- 第二章:12.3 建立表现基准
望云山190
基准性能水平人工智能机器学习
背景介绍语音识别是一种常见的机器学习应用,用户通过语音输入代替键盘输入,系统需要将语音转换为文本。在这个过程中,算法的性能可以通过训练误差和交叉验证误差来评估。误差定义训练误差(Jtrain):指算法在训练数据集上无法正确转录的音频片段的百分比。在这个例子中,训练误差是10.8%,意味着算法在训练数据上犯了10.8%的错误。交叉验证误差(Jcv):指算法在未见过的数据(交叉验证集)上无法正确转录的
- 单链表基本操作(C语言版)
邂逅you
数据结构数据结构ptac语言开发语言数据结构算法链表
7-1单链表基本操作分数45作者朱允刚单位吉林大学请编写程序实现单链表插入、删除结点等基本算法。给定一个单链表和一系列插入、删除结点的操作序列,输出实施上述操作后的链表。单链表数据域值为整数。输入格式:输入第1行为1个正整数n,表示当前单链表长度;第2行为n个空格间隔的整数,为该链表n个元素的数据域值。第3行为1个正整数m,表示对该链表施加的操作数量;接下来m行,每行表示一个操作,为2个或3个整数
- 图论- Dijkstra算法
左灯右行的爱情
图论算法python
Dijkstra算法前言概念BFS基础模版DijkstraDijkstra函数签名State类distTo记录最短路径伪代码模版第一个问题解答第二个问题解答第三个问题解答前言学习这个算法之间,必须要对BFS遍历比较熟悉,它的本质就是一个特殊改造过的BFS算法.概念Dijkstra算法是一种计算图中单源最短路径算法,本质上是一个经过特殊改造的BFS算法,改造点有两个:使用优先队列,而不是普通队列进行
- 图论 - 一些经典小算法思想(无题目例子)
左灯右行的爱情
图论算法java
经典小算法前言拓扑结构名流问题暴力解法优化解法二分图二分图判定思路前言主要介绍一些有意思的小算法拓扑结构简单来说,把一幅图拉平,而且这个拉平的图里面,所有的箭头方向都是一致的.比如下图所有的箭头都是朝右的.注意:如果是一副有向图存在环,无法进行拓扑排序,因为肯定做不到所有箭头方向一致;那图的拓扑结构如何实现呢?这个特别简单,首先你要先确认好建图时对边的定义!如果有向边定义为[依赖]关系:比如节点2
- 计算机网络之路由算法(层次路由算法)
DKPT
#计算机网络计算机网络网络网络协议学习笔记
一、基本思想层次路由算法的基本思想是将大规模网络划分为多个层次或区域,每个区域内部的路由器运行相同的路由协议,并维护该区域内的路由信息。区域之间的路由器则负责将数据包从一个区域转发到另一个区域,而无需了解整个网络的拓扑结构。这种分层结构可以降低路由器的路由表大小,提高路由算法的效率和可扩展性。二、工作原理区域划分:将整个网络划分为多个区域(或自治系统AS),每个区域内部包含一组路由器。区域之间的路
- 图论---最小生成树
漫漫信奥之路
图论图论算法数据结构
树是一种特殊的图,具有很多特殊的性质。生成树问题研究的是将图中的所有顶点保留,但只选择图中的部分边,得到一棵树(也就是图的生成树)的问题。最小生成树则是在这些生成树中,边权之和最小的生成树。可以使用prime算法或者kruskal算法求解最小生成树。生成树相关概念1、生成树定义在一个V个点的无向连通图中,取其中V-1条边,并连接所有的顶点,所得到的子图称为原图的一棵生成树2、树的属性树是图的一种特
- 探索Python数组工具类 ArrayUtils:功能强大的数组操作助手
FinkGO小码
Pythonpython开发语言程序人生numpypycharm课程设计经验分享
引言在Python编程的世界里,数组(通常以列表list形式呈现)是一种极为常用的数据结构。无论是数据处理、算法实现还是日常的编程任务,对数组进行高效且便捷的操作都是必不可少的。然而,Python内置的数组操作方法虽然丰富,但在实际开发中,我们可能需要将一些常用的操作封装起来,以提高代码的复用性和可维护性。今天,我们就来详细介绍一个自定义的Python数组工具类ArrayUtils,它将众多实用的
- YOLO系列版本迭代:从YOLOv1到YOLOv11的技术演进
金外飞176
技术前沿目标跟踪人工智能计算机视觉
YOLO系列版本迭代:从YOLOv1到YOLOv11的技术演进YOLO(YouOnlyLookOnce)系列目标检测算法自2016年首次发布以来,凭借其高效的实时检测能力,迅速成为计算机视觉领域的热门研究方向之一。本文将详细回顾YOLO系列从v1到v11的版本迭代过程,分析每个版本的技术改进、性能提升以及应用场景。1.YOLOv1:开创性的单阶段检测算法YOLOv1是目标检测领域的一个重要里程碑,
- 【DeepSeek】一文详解GRPO算法——为什么能减少大模型训练资源?
FF-Studio
DeepSeekR1算法
GRPO,一种新的强化学习方法,是DeepSeekR1使用到的训练方法。今天的这篇博客文章,笔者会从零开始,层层递进地为各位介绍一种在强化学习中极具实用价值的技术——GRPO(GroupRelativePolicyOptimization)。如果你是第一次听说这个概念,也不必慌张,笔者会带领你从最基础的强化学习背景知识讲起,一步步剖析其来龙去脉,然后再结合实例讲解GRPO在实际应用中的思路和操作示
- 《传统教培机构的痛点:数字化转型如何破局?》
数字化浪潮下的困境在当今时代,数字化浪潮正以前所未有的速度席卷全球,深刻地改变着人们的生活、工作和学习方式。这是一个数据爆炸的时代,数据成为了驱动社会发展的核心要素之一。据统计,全球每天产生的数据量高达数万亿字节,这些数据涵盖了人们生活的方方面面,从购物习惯到社交行为,从健康状况到学习偏好,都被数字化记录下来。[]()数字化时代的技术创新日新月异,人工智能、大数据、云计算、物联网等新兴技术不断涌现
- 基于FastAPI使用JWT技术实现的OAuth2用户认证接口
火云牌神
fastapiAI编程实战jwtfastapi
文章目录关于OAuth2关于JWT安装依赖准备用户数据库关于**user_dict处理用户密码和token/令牌关于hash/哈希实现登录和获取用户信息接口关于OAuth2PasswordRequestForm启动程序测试效果身份验证获取当前登录用户信息用未激活用户测试总结查看完整代码本文阐述了如何基于FastAPI框架实现OAuth2用户认证,其中使用哈希算法对密码进行了加密,使用JWT持有令牌
- 聚焦大模型!隐语技术团队研究成果被 ICASSP 与 ICLR 两大顶会收录
隐私开源模型
“隐语”是开源的可信隐私计算框架,内置MPC、TEE、同态等多种密态计算虚拟设备供灵活选择,提供丰富的联邦学习算法和差分隐私机制。开源项目:https://github.com/secretflowhttps://gitee.com/secretflow导语:2023年,「大模型」走到了聚光灯下,技术圈的“头部玩家”们纷纷入场,其潜能和价值正在被不断挖掘与释放。与此同时,大模型相关的隐私安全问题也
- Audio-Visual Speech Enhancement(视听语音增强)领域近三年研究进展与国内团队及手机厂商动态分析
AndrewHZ
深度学习新浪潮智能手机算法计算机视觉硬件架构硬件工程智能硬件
一、视听语音增强领域近三年研究进展多模态融合与模型轻量化多模态特征融合:中国科学技术大学团队提出通过引入超声舌头图像和唇部视频的联合建模,结合知识蒸馏技术,在训练阶段利用教师模型传递舌部运动知识,从而在推断时仅依赖唇部视频即可提升语音增强效果。此外,中科院声学所提出基于泰勒展开的模型架构,将幅度-相位解耦与空间-谱域解耦重新建模,提升算法可解释性并优化性能。轻量化模型设计:中国科大与腾讯天籁实验室
- 计算机学习建议
qincjun
学习
对于现代得计算机开发者而言;最快的是要见到成效;这是一个功利性的社会;对于99%的人来说,先保证自己可以在社会上活下去才是最重要的;而不是追求梦想;一、职业Web前端:HTML、CSS、JavaScript、Vue3框架、React框架等;客户端:C#后端:(C语言、C++)或者Java数据库:MySQL之类的数据库操作;算法工程师:算法相关书籍;架构师:Linux相关;并做过前后端请一定要想好去
- DeepSeek的崛起之路:从技术突破到行业变革
诚信爱国敬业友善
心得人工智能aiDeepSeek
一、DeepSeek的进化历程初创与奠基(2023-2024)作为幻方量化子公司,DeepSeek于2023年在杭州成立,专注于大语言模型研发。其首代模型通过量化投资的算法积累实现推理效率突破,为后续发展奠定基础。技术爆发(2024-2025)2024年末:发布DeepSeek-V3(671B参数),性能超越多数开源模型,逼近GPT-4等闭源标杆。2025年1月:推出R1系列(660B参数),通过
- 《六月集训》(第二十三天)——字典树
EchoRouRou
leetcodec++leetcoe字典树
文章目录前言一、练习题目二、算法思路三、源码剖析前言欢迎大家积极在评论区留言发表自己的看法,知无不言,言无不尽,养成每天刷题的习惯,也可以自己发布优质的解题报告,供社区一同鉴赏,吸引一波自己的核心粉丝。今天是六月集训第二十三天:字典树一、练习题目472.连接词面试题17.15.最长单词二、算法思路1、472.连接词:题目有点难。还在从基础看起,2、面试题17.15.最长单词:三、源码剖析//472
- Aerospike
小的~~
nosqlAerospike
文章来源:拉勾教育Java高薪训练营第3期Aerospike介绍Aerospike(简称AS)是一个分布式,可扩展的键值存储的NoSQL数据库。T级别大数据高并发的结构化数据存储读写操作达微妙级,99%的响应可在1毫秒内实现采用混合架构,索引存储在内存中,而数据可存储在机械硬盘(HDD)或固态硬盘(SSD)上(也可存储在内存)AS内部在访问SSD屏蔽了文件系统层级,直接访问地址,保证了数据的读取速
- 算法竞赛备赛——【背包DP】多重背包
Aurora_wmroy
算法竞赛备赛算法动态规划c++数据结构蓝桥杯
多重背包基础模型有一个体积为V的背包,商店有n种物品,每种物品有一个价值v和体积w,每种物品有s个,问能够装下物品的最大价值。这里每一种物品只有s+1种状态即“拿0个、1个、2个…s个”在基础版模型中,多重背包就是将每种物品的s个摊开,变为s种相同的物品,从而退化成01背包处理只需要在01背包的基础上稍加改动,对每一个物品循环更新s次即可时间复杂度为O(nsV)例题小明的背包3蓝桥知识点:DP——
- leetcode盛水最多的容器c++深度剖析【双指针篇】
重铸自身根基
优选算法leetcodec++算法
盛水最多的容器前言对于程序员来说,必不可少的就是一定的算法能力,可以跟着小编一起学习题目的做题思路,培养算法能力,这里的双指针抽象为一种数组下标,更像是一种做题思路文章目录盛水最多的容器前言题目解读算法思路编写代码总结题目解读查看原题请点击&height){intleft=0,right=height.size()-1,ret=0;while(leftheight[right])right--;e
- 基于图像处理的裂缝宽度检测系统-matlab
人工智能专属驿站
计算机视觉图像处理人工智能
图像处理技术广泛地应用于桥梁、房屋、道路等工程施工中出现的表面裂缝,利用数字图像处理技术来测量结构物表面裂缝宽度是一种无损检测方法.基于图像处理的裂缝宽度检测系统需采用的图像处理算法有:(1)读取裂缝图像;(2)图像转化为灰度图像;(3)图像的增强;(4)平滑滤波;(5)阈值分割;(6)形态学去噪;(7)边缘检测(Canny算子);(8)边缘坐标点的提取;结果见:源程序见:基于图像处理的裂缝宽度检
- 0基础Deepseek-AI编程课程
2501_90533339
AI编程人工智能
这个0基础Deepseek-AI编程班课程,专门为没有编程经验的学员设计,涵盖了AI编程的基础知识,并深入讲解算法类工具的设计思维,让学员掌握AI编程的核心技能,最终能够独立开发AI工具。课程亮点✅从零开始:即使是0基础的小白,也能快速入门AI编程,掌握核心概念。✅实战驱动:课程不仅仅讲解理论,更会带领学员动手实操,设计属于自己的AI工具。✅深入AI算法:掌握AI编程的逻辑,理解如何构建和优化AI
- ORB-SLAM3源码的学习:GeometricTools文件
PaLu-LvL
计算机视觉#ORB-SLAM3c++计算机视觉ubuntu人工智能学习
前言GeometricTools提供了两种几何计算功能:1.计算两个关键帧之间的基础矩阵、2.通过三角化算法从两个视角恢复三维点。这部分功能在ORB-SLAM2中就已经介绍过了,这里不过多赘述。1.头文件GeometricTools.h除了计算基础矩阵和三角化恢复三维点外,头文件中还提供了两种用于比较矩阵的模板函数。第一个函数用于比较一个OpenCV矩阵和一个Eigen矩阵,第二个函数用于比较两个
- tar 压缩算法对比与实践指南
tar压缩效率linux建议
在Linux系统管理和开发过程中,文件压缩打包是一项常见的需求。tar作为最常用的归档工具,支持多种压缩算法,不同算法之间在压缩比、压缩速度和解压速度等方面各有特点。本文将深入分析各种压缩算法的性能特征,并提供实用的选择建议。压缩算法性能对比我们选择了五种常用的压缩方式进行测试,包括:原始tar(无压缩)gzip压缩(tar.gz)xz压缩(tar.xz)zstd压缩(tar.zst)lz4压缩(
- 朴素贝叶斯模型在文本分类中的应用
Ash Butterfield
nlp分类数据挖掘人工智能
朴素贝叶斯(NaiveBayes)是一种基于贝叶斯定理的概率分类算法,广泛应用于文本分类任务中。它的核心思想是根据训练数据中不同类别的条件概率,预测新文本属于哪个类别。尽管其假设条件较为简单(假设特征之间相互独立),但朴素贝叶斯在许多实际应用中仍表现出色,特别是在处理文本分类任务时。本文将介绍朴素贝叶斯模型的基本原理、在文本分类中的应用以及其优缺点,并通过示例说明其具体实现。1.朴素贝叶斯模型的基
- 6个大数据应用案例
雪兽软件
科技前沿大数据
根据市场数据预测报告,到2026年,全球大数据市场可能达到2684亿美元。随着大数据市场的快速增长,组织正在利用大数据来获得洞察力,帮助他们做出更好的决策,改善运营,最终推动最佳增长。从医疗保健到金融,从零售到电信,大数据正被用于改变行业的运作方式,使企业能够创造新的收入来源,增强客户体验,提高运营效率。这个全面的博客将探索令人兴奋的大数据用例领域,探索商业组织如何利用数据获得洞察力,推动创新,并
- 量子计算信息安全威胁与应对
岛屿旅人
网络安全行业分析量子计算web安全人工智能安全网络网络安全
文章目录前言一、量子计算信息安全威胁及影响1.2量子计算发展迅速,安全威胁日益迫近二、PQC研究与应用进展2.1欧美在PQC领域研究近三十年,积累深厚2.2NIST引领PQC标准制定,取得初步成果2.3美国全方位布局加快推动PQC迁移与应用三、PQC应用发展前景3.1PQC算法和应用安全性需进一步验证3.2PQC算法国际标准将持续开展研究3.3PQC升级迁移是一项长期系统性工程四、QKD技术优劣势
- 机器学习 - 学习线性模型的重要性
谦亨有终
跟着AI向前走机器学习学习人工智能
在接下来的博文中,我们将重点学习线性模型的回归模型和分类模型,在学习之前,让我们来了解一下学习线性模型的重要性,以及如何入门学习。一、作为初学者如何学习线性模型?作为初学者,要高效学习机器学习以及其中的线性模型,可以遵循以下几个步骤和建议:(一)、机器学习的整体学习策略打好数学基础线性代数:理解向量、矩阵、线性变换等,这些是理解模型表示(如y=w^Tx+b)和算法优化的基础。微积分:掌握导数、梯度
- Java 大视界 -- Java 大数据在智能体育中的应用与赛事分析(80)
青云交
大数据新视界Java大视界java大数据智能体育数据采集运动员训练赛事分析赛事预测
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- Java 大视界 -- Java 大数据在智能供应链中的应用与优化(76)
青云交
大数据新视界Java大视界大数据智能供应链数据采集整合数据存储管理需求预测物流调度风险管理
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- 算法基础1.3:双指针,位运算,离散化,区间合并
sunluyang521
算法基础算法
双指针for(inti=0,j=0;iusingnamespacestd;constintN=100010;intn;intq[N],s[N];//s存的是当前j到i这个区间里面每一个数出现的次数。intmain(){scanf("%d",&n);for(inti=0;i1)s[q[j++]]--;//有重复的数,把它拿出去,表示这个数减1res=max(res,i-j+1);//更新答案}cou
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro