闵可夫斯基距离(MinkowskiDistance)

闵可夫斯基距离(MinkowskiDistance)

闵氏距离不是一种距离,而是一组距离的定义。

(1)闵氏距离的定义

       两个n维变量a(x11,x12,…,x1n)与b(x21,x22,…,x2n)间的闵可夫斯基距离定义为:

闵可夫斯基距离(MinkowskiDistance)_第1张图片

 其中p是一个变参数。

当p=1时,就是曼哈顿距离

当p=2时,就是欧氏距离

当p→∞时,就是切比雪夫距离

       根据变参数的不同,闵氏距离可以表示一类的距离。​

(2)闵氏距离的缺点

  闵氏距离,包括曼哈顿距离、欧氏距离和切比雪夫距离都存在明显的缺点。

  举个例子:二维样本(身高,体重),其中身高范围是150~190,体重范围是50~60,有三个样本:a(180,50),b(190,50),c(180,60)。

那么a与b之间的闵氏距离(无论是曼哈顿距离、欧氏距离或切比雪夫距离)等于a与c之间的闵氏距离,但是身高的10cm并不等价于体重的10kg!

因此用闵氏距离来衡量这些样本间的相似度很有问题。

       简单说来,闵氏距离的缺点主要有两个:

(1)将各个分量的量纲(scale),也就是“单位”当作相同的看待了。

(2)没有考虑各个分量的分布(期望,方差等)可能是不同的。

你可能感兴趣的:(闵可夫斯基距离(MinkowskiDistance))