网易吴恩达机器学习编程作业答案--exercise1 linear regression

单变量线性回归主函数代码(实验工具Octave)

%% Machine Learning Online Class - Exercise 1: Linear Regression

%  Instructions
%  ------------
%
%  This file contains code that helps you get started on the
%  linear exercise. You will need to complete the following functions
%  in this exericse:
%
%     warmUpExercise.m
%     plotData.m
%     gradientDescent.m
%     computeCost.m
%     gradientDescentMulti.m
%     computeCostMulti.m
%     featureNormalize.m
%     normalEqn.m
%
%  For this exercise, you will not need to change any code in this file,
%  or any other files other than those mentioned above.
%
% x refers to the population size in 10,000s
% y refers to the profit in $10,000s
%


%% Initialization
clear ; close all; clc


%% ==================== Part 1: Basic Function ====================
% Complete warmUpExercise.m
fprintf('Running warmUpExercise ... \n');
fprintf('5x5 Identity Matrix: \n');
warmUpExercise()


fprintf('Program paused. Press enter to continue.\n');
pause;




%% ======================= Part 2: Plotting =======================
fprintf('Plotting Data ...\n')
data = load('C:\Users\think123\Desktop\ex1data1.txt');
X = data(:, 1); y = data(:, 2);
m = length(y); % number of training examples


% Plot Data
% Note: You have to complete the code in plotData.m
plotData(X, y);


fprintf('Program paused. Press enter to continue.\n');
pause;


%% =================== Part 3: Cost and Gradient descent ===================


X = [ones(m, 1), data(:,1)]; % Add a column of ones to x
theta = zeros(2, 1); % initialize fitting parameters


% Some gradient descent settings
iterations = 1500;
alpha = 0.01;


fprintf('\nTesting the cost function ...\n')
% compute and display initial cost
J = computeCost(X, y, theta);
fprintf('With theta = [0 ; 0]\nCost computed = %f\n', J);
fprintf('Expected cost value (approx) 32.07\n');


% further testing of the cost function
J = computeCost(X, y, [-1 ; 2]);
fprintf('\nWith theta = [-1 ; 2]\nCost computed = %f\n', J);
fprintf('Expected cost value (approx) 54.24\n');


fprintf('Program paused. Press enter to continue.\n');
pause;


fprintf('\nRunning Gradient Descent ...\n')
% run gradient descent
theta = gradientDescent(X, y, theta, alpha, iterations);


% print theta to screen
fprintf('Theta found by gradient descent:\n');
fprintf('%f\n', theta);
fprintf('Expected theta values (approx)\n');
fprintf(' -3.6303\n  1.1664\n\n');


% Plot the linear fit
hold on; % keep previous plot visible
plot(X(:,2), X*theta, '-')
legend('Training data', 'Linear regression')
hold off % don't overlay any more plots on this figure


% Predict values for population sizes of 35,000 and 70,000
predict1 = [1, 3.5] *theta;
fprintf('For population = 35,000, we predict a profit of %f\n',...
    predict1*10000);
predict2 = [1, 7] * theta;
fprintf('For population = 70,000, we predict a profit of %f\n',...
    predict2*10000);


fprintf('Program paused. Press enter to continue.\n');
pause;


%% ============= Part 4: Visualizing J(theta_0, theta_1) =============
fprintf('Visualizing J(theta_0, theta_1) ...\n')


% Grid over which we will calculate J
theta0_vals = linspace(-10, 10, 100);
theta1_vals = linspace(-1, 4, 100);


% initialize J_vals to a matrix of 0's
J_vals = zeros(length(theta0_vals), length(theta1_vals));


% Fill out J_vals
for i = 1:length(theta0_vals)
    for j = 1:length(theta1_vals)
 t = [theta0_vals(i); theta1_vals(j)];
 J_vals(i,j) = computeCost(X, y, t);
    end
end




% Because of the way meshgrids work in the surf command, we need to
% transpose J_vals before calling surf, or else the axes will be flipped
J_vals = J_vals';
% Surface plot
figure;
surf(theta0_vals, theta1_vals, J_vals)
xlabel('\theta_0'); ylabel('\theta_1');


% Contour plot
figure;
% Plot J_vals as 15 contours spaced logarithmically between 0.01 and 100
contour(theta0_vals, theta1_vals, J_vals, logspace(-2, 3, 20))
xlabel('\theta_0'); ylabel('\theta_1');
hold on;
plot(theta(1), theta(2), 'rx', 'MarkerSize', 10, 'LineWidth', 2);

hold on;


多变量线性回归主函数代码

%% Machine Learning Online Class
%  Exercise 1: Linear regression with multiple variables
%
%  Instructions
%  ------------

%  This file contains code that helps you get started on the
%  linear regression exercise. 
%
%  You will need to complete the following functions in this 
%  exericse:
%
%     warmUpExercise.m
%     plotData.m
%     gradientDescent.m
%     computeCost.m
%     gradientDescentMulti.m
%     computeCostMulti.m
%     featureNormalize.m
%     normalEqn.m
%
%  For this part of the exercise, you will need to change some
%  parts of the code below for various experiments (e.g., changing
%  learning rates).
%


%% Initialization


%% ================ Part 1: Feature Normalization ================


%% Clear and Close Figures
clear ; close all; clc


fprintf('Loading data ...\n');


%% Load Data
data = load('C:\Users\think123\Desktop\ex1data2.txt');
X = data(:, 1:2);
y = data(:, 3);
m = length(y);


% Print out some data points
fprintf('First 10 examples from the dataset: \n');
fprintf(' x = [%.0f %.0f], y = %.0f \n', [X(1:10,:) y(1:10,:)]');


fprintf('Program paused. Press enter to continue.\n');
pause;


% Scale features and set them to zero mean
fprintf('Normalizing Features ...\n');


[X mu sigma] = featureNormalize(X);


% Add intercept term to X
X = [ones(m, 1) X];




%% ================ Part 2: Gradient Descent ================


% ====================== YOUR CODE HERE ======================
% Instructions: We have provided you with the following starter
%               code that runs gradient descent with a particular
%               learning rate (alpha). 
%
%               Your task is to first make sure that your functions - 
%               computeCost and gradientDescent already work with 
%               this starter code and support multiple variables.
%
%               After that, try running gradient descent with 
%               different values of alpha and see which one gives
%               you the best result.
%
%               Finally, you should complete the code at the end
%               to predict the price of a 1650 sq-ft, 3 br house.
%
% Hint: By using the 'hold on' command, you can plot multiple
%       graphs on the same figure.
%
% Hint: At prediction, make sure you do the same feature normalization.
%


fprintf('Running gradient descent ...\n');


% Choose some alpha value
alpha = 0.01;
num_iters = 400;


% Init Theta and Run Gradient Descent 
theta = zeros(3, 1);
[theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters);


% Plot the convergence graph
figure;
plot(1:numel(J_history), J_history, '-b', 'LineWidth', 2);
xlabel('Number of iterations');
ylabel('Cost J');


% Display gradient descent's result
fprintf('Theta computed from gradient descent: \n');
fprintf(' %f \n', theta);
fprintf('\n');


% Estimate the price of a 1650 sq-ft, 3 br house
% ====================== YOUR CODE HERE ======================
% Recall that the first column of X is all-ones. Thus, it does
% not need to be normalized.
price = theta(1) + theta(2)*(1650-mu(1))/sigma(1) + theta(3)*(3-mu(2))/sigma(2);


% ============================================================


fprintf(['Predicted price of a 1650 sq-ft, 3 br house ' ...
         '(using gradient descent):\n $%f\n'], price);


fprintf('Program paused. Press enter to continue.\n');
pause;


%% ================ Part 3: Normal Equations ================


fprintf('Solving with normal equations...\n');


% ====================== YOUR CODE HERE ======================
% Instructions: The following code computes the closed form 
%               solution for linear regression using the normal
%               equations. You should complete the code in 
%               normalEqn.m
%
%               After doing so, you should complete this code 
%               to predict the price of a 1650 sq-ft, 3 br house.
%


%% Load Data
data = csvread('C:\Users\think123\Desktop\ex1data2.txt');
X = data(:, 1:2);
y = data(:, 3);
m = length(y);


% Add intercept term to X
X = [ones(m, 1) X];


% Calculate the parameters from the normal equation
theta = normalEqn(X, y);


% Display normal equation's result
fprintf('Theta computed from the normal equations: \n');
fprintf(' %f \n', theta);
fprintf('\n');




% Estimate the price of a 1650 sq-ft, 3 br house
% ====================== YOUR CODE HERE ======================
price = theta(1) + theta(2)*1650 + theta(3)*3;


% ============================================================


fprintf(['Predicted price of a 1650 sq-ft, 3 br house ' ...

         '(using normal equations):\n $%f\n'], price);



相关代码

%     warmUpExercise.m

%     plotData.m

%     gradientDescent.m
%     computeCost.m
%     gradientDescentMulti.m
%     computeCostMulti.m
%     featureNormalize.m
%     normalEqn.m

下载链接http://download.csdn.net/download/jingtaoqian8521/10267598

你可能感兴趣的:(网易吴恩达机器学习编程作业答案--exercise1 linear regression)