深度学习遥感影像分类之数据集批量准备

深度学习遥感影像分类之数据集批量准备

近年来,深度学习在遥感影像地物分类中取得了一系列显著的效果。CNN可以很好的获取影像纹理信息,捕捉像素与像素之间的空间特征,因此,一个训练好的深度学习模型在地物提取中具有很大的优势。但模型的训练却是一个很繁琐的任务,需要人工准备数据集,贴标签,训练模型等。本文将以sar影像为例实现冰水二分类的数据集批量准备工作(划线取点截取小图片保存):

1.原始sar遥感影像深度学习遥感影像分类之数据集批量准备_第1张图片

2.预处理思路:

     a.人工划线:对应在冰和水上画n条线(自己设置,注意自己需要针对类别所占比例控制线条数量和长度)

     b.保存小图片:获取直线上点坐标,以每个像素点为中心取21×21的小图片(类似mnist数据集,尺寸自己设置),保存至文件夹

     c. 创建label:以保存的小图片名称+空格+类别(0或者1)将label保存至新创建的txt文档中

3.代码实现:

     a.创建一个main函数调用drawTrainingSamples(img);CreateTrainSmallImages(img);drawValSamples(img);CreateValSmallImages(img);这四个函数,功能分别是和划训练集,创建训练集,划验证集,创建验证集

1
2
3
4
5
6
7
8
9
10
11
clear  ;
clc ;
 
img =  imread ( '150905_multilook_4_s1a-ew-grd-hv-20150905t174712-20150905t174812-007583-00a7f0-002.tiff' );
%准备训练集数据
drawTrainingSamples(img);
CreateTrainSmallImages(img);
 
%准备验证集数据
drawValSamples(img);
CreateValSmallImages(img);

      b.drawTrainingSamples(img)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
function  [] = drawTrainingSamples(img)
n_ice=4;
n_water=4;
h_im=imshow(img);
bw_train_ice= zeros ( size (img));
bw_train_water= zeros ( size (img));
fprintf ( 'please draw four lines on the picture for preparing the training sets of Ice' );
for  i  = 1:n_ice
     h = imline;
     bw = createMask(h,h_im);
     bw_train_ice=bw_train_ice+bw;
end
figure ,imshow(bw_train_ice);
 
  h_im=imshow(img);
  fprintf ( 'please draw four lines on the picture for preparing the training sets of Water' );
  for  i  = 1:n_water
     h = imline;
     bw = createMask(h,h_im);
     bw_train_water=bw_train_water+bw;
  end
figure ,imshow(bw_train_water);
 
  save ( 'bw_train_ice.mat' , 'bw_train_ice' );
  save ( 'bw_train_water.mat' , 'bw_train_water' );

       c.CreateTrainSmallImages(img)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
function  [] = CreateTrainSmallImages(img)
 
%创建小图片
       load  bw_train_ice;
       load  bw_train_water;
        fprintf ( 'Creating training small images...' );
         [X,Y]= find (bw_train_ice==1);
         A=[X,Y];
         A;
         [a,b]= size (A);
         mkdir ( 'train' );
         
             for  i =1:a
                     m=A( i ,1);
                     n=A( i ,2);
                     SmallImage=img(m-10:m+10,n-10:n+10);
                     imwrite (SmallImage,[ 'train/' , num2str ( i ), '.jpg' ]);
                      
                     fid =  fopen ( 'train.txt' 'a' ); 
                     t=[ num2str ( i ), '.jpg' ];
                     fprintf (fid,  '%s %d \n' , t,0); 
                     fclose (fid);
             end
             
         [X,Y]= find (bw_train_water==1);
         B=[X,Y];
         B;
         [a,b]= size (B);
         
             for  j =1:a
                     m=B( j ,1);
                     n=B( j ,2);
                     SmallImage=img(m-10:m+10,n-10:n+10);
                      j = i + j ;
                     imwrite (SmallImage,[ 'train/' , num2str ( j ), '.jpg' ]);
                      
                     fid =  fopen ( 'train.txt' 'a' ); 
                     t=[ num2str ( j ), '.jpg' ];
                     fprintf (fid,  '%s %d \n' , t,1); 
                     fclose (fid);
                      
             end
end

       d.drawValSamples(img)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
function  [] = drawValSamples(img)
n_ice=4;
n_water=4;
h_im=imshow(img);
bw_val_ice= zeros ( size (img));
bw_val_water= zeros ( size (img));
fprintf ( 'please draw four lines on the picture for preparing the validition sets of Ice' );
for  i  = 1:n_ice
     h = imline;
     bw = createMask(h,h_im);
     bw_val_ice=bw_val_ice+bw;
end
figure ,imshow(bw_val_ice);
 
  h_im=imshow(img);
  fprintf ( 'please draw four lines on the picture for preparing the validition sets of Water' );
  for  i  = 1:n_water
     h = imline;
     bw = createMask(h,h_im);
     bw_val_water=bw_val_water+bw;
  end
figure ,imshow(bw_val_water);
 
  save ( 'bw_val_ice.mat' , 'bw_val_ice' );
  save ( 'bw_val_water.mat' , 'bw_val_water' );

       e.CreateValSmallImages(img)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
function  [] = CreateValSmallImages(img)
 
%创建小图片
       load  bw_val_ice;
       load  bw_val_water;
 
         [X,Y]= find (bw_val_ice==1);
         A=[X,Y];
         A;
         [a,b]= size (A);
         mkdir ( 'val' );
           fprintf ( 'Creating validition sets small images...' );
             for  i =1:a
                     m=A( i ,1);
                     n=A( i ,2);
                     SmallImage=img(m-10:m+10,n-10:n+10);
                     imwrite (SmallImage,[ 'val/' , num2str ( i ), '.jpg' ]);
                      
                     fid =  fopen ( 'val.txt' 'a' ); 
                     t=[ num2str ( i ), '.jpg' ];
                     fprintf (fid,  '%s %d \n' , t,0); 
                     fclose (fid);
             end
             
         [X,Y]= find (bw_val_water==1);
         B=[X,Y];
         B;
         [a,b]= size (B);
         
             for  j =1:a
                     m=B( j ,1);
                     n=B( j ,2);
                     SmallImage=img(m-10:m+10,n-10:n+10);
                     j = i + j ;
                     imwrite (SmallImage,[ 'val/' , num2str ( j ), '.jpg' ]);
                      
                     fid =  fopen ( 'val.txt' 'a' ); 
                     t=[ num2str ( j ), '.jpg' ];
                     fprintf (fid,  '%s %d \n' , t,1); 
                     fclose (fid);
                      
             end
end

 

你可能感兴趣的:(遥感图像)