本文简单介绍下如何在springboot中集成kafka收发消息
1、先安装依赖的jar包:
org.springframework.kafka
spring-kafka
2.2.4.RELEASE
org.apache.kafka
kafka_2.12
2.2.0
2、kafka的配置信息如下:
#kafka相关参数配置
kafka:
consumer:
servers: 127.0.0.1:9092
enable:
auto:
commit: true #(是否自动提交)
session:
timeout: 20000 #连接超时时间
auto:
commit:
interval: 100
offset:
reset: latest # (实时生产,实时消费,不会从头开始消费)
topic: result #消费者的topic
group:
id: test #(消费组)
concurrency: 10 #(设置消费线程数)
producer:
servers: 118.89.28.233:9092
topic: result #(生产的topic)
retries: 0
batch:
size: 4096
linger: 1
buffer:
memory: 40960
3、configuration:kafka producer
通过@configuration @EnableKafka,声明config并打开kafkaTemplate的能力
通过@value注入application.yml配置文件中的kafka的配置
生成bean@Bean
生产者类:
/**
* author jinsq
*
* @date 2019/5/22 15:09
*/
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.common.serialization.StringSerializer;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.annotation.EnableKafka;
import org.springframework.kafka.core.DefaultKafkaProducerFactory;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.core.ProducerFactory;
import java.util.HashMap;
import java.util.Map;
/**
* kafka生产配置
* @author Lvjiapeng
*
*/
@Configuration
@EnableKafka
public class KafkaProducerConfig {
@Value("${kafka.producer.servers}")
private String servers;
@Value("${kafka.producer.retries}")
private int retries;
@Value("${kafka.producer.batch.size}")
private int batchSize;
@Value("${kafka.producer.linger}")
private int linger;
@Value("${kafka.producer.buffer.memory}")
private int bufferMemory;
public Map producerConfigs() {
Map props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, servers);
props.put(ProducerConfig.RETRIES_CONFIG, retries);
props.put(ProducerConfig.BATCH_SIZE_CONFIG, batchSize);
props.put(ProducerConfig.LINGER_MS_CONFIG, linger);
props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, bufferMemory);
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
return props;
}
public ProducerFactory producerFactory() {
return new DefaultKafkaProducerFactory<>(producerConfigs());
}
@Bean
public KafkaTemplate kafkaTemplate() {
return new KafkaTemplate(producerFactory());
}
}
消费者类:
/**
* author jinsq
*
* @date 2019/5/22 15:10
*/
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.annotation.EnableKafka;
import org.springframework.kafka.config.ConcurrentKafkaListenerContainerFactory;
import org.springframework.kafka.config.KafkaListenerContainerFactory;
import org.springframework.kafka.core.ConsumerFactory;
import org.springframework.kafka.core.DefaultKafkaConsumerFactory;
import org.springframework.kafka.listener.ConcurrentMessageListenerContainer;
import java.util.HashMap;
import java.util.Map;
/**
* kafka消费者配置
* @author Lvjiapeng
*
*/
@Configuration
@EnableKafka
public class KafkaConsumerConfig {
@Value("${kafka.consumer.servers}")
private String servers;
@Value("${kafka.consumer.enable.auto.commit}")
private boolean enableAutoCommit;
@Value("${kafka.consumer.session.timeout}")
private String sessionTimeout;
@Value("${kafka.consumer.auto.commit.interval}")
private String autoCommitInterval;
@Value("${kafka.consumer.group.id}")
private String groupId;
@Value("${kafka.consumer.auto.offset.reset}")
private String autoOffsetReset;
@Value("${kafka.consumer.concurrency}")
private int concurrency;
public Map consumerConfigs() {
Map propsMap = new HashMap<>();
propsMap.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, servers);
propsMap.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, enableAutoCommit);
propsMap.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, autoCommitInterval);
propsMap.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, sessionTimeout);
propsMap.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
propsMap.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
propsMap.put(ConsumerConfig.GROUP_ID_CONFIG, groupId);
propsMap.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, autoOffsetReset);
return propsMap;
}
public ConsumerFactory consumerFactory() {
return new DefaultKafkaConsumerFactory<>(consumerConfigs());
}
@Bean
public KafkaListenerContainerFactory> kafkaListenerContainerFactory() {
ConcurrentKafkaListenerContainerFactory factory = new ConcurrentKafkaListenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory());
factory.setConcurrency(concurrency);
factory.getContainerProperties().setPollTimeout(1500);
return factory;
}
/**
* kafka监听
* @return
*/
@Bean
public RawDataListener listener() {
return new RawDataListener();
}
}
实现producer,写一个controller,发送消息
/**
* author jinsq
*
* @date 2019/5/22 10:59
*/
@RestController
@RequestMapping("test")
public class KafkaTestController {
@Autowired
private KafkaTemplate kafkaTemplate;
@RequestMapping(value = "/producer")
public R consume(@RequestBody String body) throws IOException {
kafkaTemplate.send("result",body);
return R.ok();
}
}
newListener()生成一个bean用来处理从kafka读取数据。Listener的实现demo如下:
@KafkaListener中的topics属于用于指定kafka topic的名称,topic名称是由消息的生产者指定,也就是kafkaTemplate在发送消息的时候指定。
/**
* author jinsq
*
* @date 2019/5/22 17:06
*/
import lombok.extern.slf4j.Slf4j;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component;
import java.io.IOException;
/**
* kafka监听
* @author shangzz
*
*/
@Component
@Slf4j
public class RawDataListener {
/**
* 实时获取kafka数据(生产一条,监听生产topic自动消费一条)
* @param record
* @throws IOException
*/
@KafkaListener(topics = {"${kafka.consumer.topic}"})
public void listen(ConsumerRecord, ?> record) throws IOException {
String value = (String) record.value();
String topic = record.topic();
if("result".equals(topic)){
log.info("接收到的信息为:"+value);
}
}
}
最后再写一个并发测试的demo对我们的代码进行测试。
如下:
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.test.context.junit4.SpringRunner;
import java.util.concurrent.CountDownLatch;
/**
* author jinsq
*
* @date 2019/5/22 17:27
*/
@RunWith(SpringRunner.class)
@SpringBootTest
public class CountDownLatchTest {
@Autowired
private KafkaTemplate kafkaTemplate;
//模拟短时间内的并发请求量
private static final int threadNum =20000;
//倒计时器,用于模拟高并发
private CountDownLatch cdl = new CountDownLatch(threadNum);
private static int i = 0;
@Test
public void test(){
for(int i =0;i<=threadNum;i++){
MyThread myThread = new MyThread(cdl);
Thread thread = new Thread(myThread);
thread.start();
}
try {
cdl.await();
}catch (Exception e){
e.printStackTrace();
}
}
class MyThread implements Runnable{
private CountDownLatch countDownLatch;
public MyThread(CountDownLatch countDownLatch){
this.countDownLatch = countDownLatch;
}
@Override
public void run(){
kafkaTemplate.send("result","发送消息为:"+(i++));
countDownLatch.countDown();
}
}
}
看代码中,我们同时开启了20000个线程进行并发测试,代码都没有问题,消费正常。