- 基于区块链技术的超级账本(Hyperledger) - 从理论到实战
在多模态模型的架构上,ChatGPT的绘图能力主要依赖以下几个核心组件:跨模态编码器(Cross-ModalEncoder):跨模态编码器的作用是将文本和图像的特征进行对齐。GPT可以将用户输入的文本描述转换为文本特征表示,然后利用跨模态编码器将这些特征映射到图像特征空间。这种方式确保模型能够理解描述性语言中不同细节是如何与图像特征对应的。
- 知识蒸馏和剪枝
我叫罗泽南
深度学习剪枝算法机器学习
知识蒸馏(KnowledgeDistillation)和模型剪枝(ModelPruning)是两种常用的模型压缩和加速技术,它们被广泛用于提高模型的推理效率,尤其是在边缘设备和资源受限的环境中。这两种技术的目标是减少模型的大小和计算成本,同时尽量保持模型的性能。1、知识蒸馏定义:知识蒸馏是一种将复杂模型(通常称为“教师模型”)的知识传递给小模型(称为“学生模型”)的技术。学生模型通过模仿教师模型的
- 交叉熵损失函数(Cross-Entropy Loss)
我叫罗泽南
深度学习人工智能
原理交叉熵损失函数是深度学习中分类问题常用的损失函数,特别适用于多分类问题。它通过度量预测分布与真实分布之间的差异,来衡量模型输出的准确性。交叉熵的数学公式交叉熵的定义如下:CrossEntroyLoss=−∑i=1Nyi⋅log(y^i)\begin{equation}CrossEntroyLoss=-\sum_{i=1}^{N}y_i\cdotlog(\hat{y}_i)\end{equati
- 什么是多模态机器学习:跨感知融合的智能前沿
非凡暖阳
人工智能神经网络
在人工智能的广阔天地里,多模态机器学习(MultimodalMachineLearning)作为一项前沿技术,正逐步解锁人机交互和信息理解的新境界。它超越了单一感官输入的限制,通过整合视觉、听觉、文本等多种数据类型,构建了一个更加丰富、立体的认知模型,为机器赋予了接近人类的综合感知与理解能力。本文将深入探讨多模态机器学习的定义、核心原理、关键技术、面临的挑战以及未来的应用前景,旨在为读者勾勒出这一
- 使用Llama 3.2-Vision多模态LLM与您的图像聊天
AI程序猿人
llamatransformerpytorch深度学习大模型应用人工智能大模型
介绍将视觉能力与大型语言模型(LLMs)结合的多模态LLM(MLLM)正在通过多模态LLM革命性地改变计算机视觉领域。这些模型结合了文本和视觉输入,展示了在图像理解和推理方面的出色能力。虽然这些模型以前只能通过API访问,但最近的开源选项现在允许本地执行,使其在生产环境中更具吸引力。在此教程中,我们将学习如何使用开源的Llama3.2-Vision模型与图像进行聊天,你会对其OCR、图像理解和推理
- AI大模型如何赋能电商行业,引领变革
虞书欣的C
人工智能开发语言
•个性化推荐:利用机器学习算法分析用户的历史购买记录、浏览行为和喜好,生成个性化的产品推荐列表,提升用户的购买意愿和满意度。•优化用户体验:•智能搜索引擎:运用自然语言处理技术,优化搜索引擎,让用户能够通过自然语言进行搜索。•虚拟客服:通过聊天机器人和语音助手,提供24/7的客户支持,快速解答用户咨询。•图像识别:利用计算机视觉技术,用户可以通过拍照识别商品,快速找到相似商品或进行排版搭配推荐。•
- AI大模型引领医疗变革:十大创新应用场景塑造智慧医疗新时代
和老莫一起学AI
人工智能自动化数据库学习语言模型大模型
前言在人工智能技术的迅猛发展中,AI大模型以其无与伦比的数据处理能力和深度学习能力,正逐步成为医疗健康领域变革的引领者。本文旨在深入探讨AI大模型在医疗领域的十大创新应用场景,展示其如何显著提升医疗服务效率、赋能临床决策,并推动整个行业向智能化转型。一、智能化诊疗:精准辅助,提升诊断效率AI大模型凭借对海量医疗数据的深度分析,能够协助医生进行更为精准的诊断。例如,百度灵医大模型凭借强大的数据处理能
- python爬虫 短视频平台数据抓取:抓取视频和评论
Python爬虫项目
2025年爬虫实战项目python爬虫音视频网络爬虫开发语言
随着短视频平台如抖音、快手、TikTok等的兴起,越来越多的内容创作者和观众通过短视频平台分享和观看视频内容。短视频平台包含了丰富的数据,如视频内容、评论、点赞数、分享数等,这些数据对市场分析、用户行为分析、视频推荐算法等方面具有重要意义。抓取这些数据可以帮助我们获取平台的动态信息,为数据分析提供基础。本文将详细介绍如何使用Python编写爬虫抓取短视频平台上的视频和评论数据,包括技术栈选择、爬虫
- 使用amd显卡本地运行ollama模型(RX6700)
丨丿丶176
ollama运行大模型语言模型
查看amd显卡是否支持ROCmAMD支持官网因为RX6700不支持HIPSDK,所以需要根据型号去ROCmLibs查找对应压缩包RX6700对应型号为gfx1031,对应的压缩包为rocm.gfx1031.for.hip.sdk.6.1.2.optimized.with.little.wu.s.logic.7z下载安装包后,继续处理ollama的安装因为官方不支持RX6700显卡加速,所以需要去o
- 材料力学仿真软件:MSC Nastran_(15).案例研究与实践
kkchenjj
材料力学仿真服务器运维开发语言材料力学仿真模拟性能优化
案例研究与实践在这一节中,我们将通过具体的案例研究和实践来深入理解如何在材料力学仿真软件中进行二次开发。我们将探讨如何使用Python脚本与MSCNastran进行交互,如何优化仿真模型,以及如何处理仿真结果。每个案例都将提供详细的操作步骤和代码示例,以帮助读者更好地掌握这些技术。1.使用Python脚本自动化模型生成1.1.案例背景在实际工程中,往往需要生成大量的仿真模型。手动创建这些模型不仅耗
- pythonsvm模型优化_Python进化算法工具箱的使用(三)用进化算法优化SVM参数
weixin_39878698
pythonsvm模型优化
前言自从上两篇博客详细讲解了Python遗传和进化算法工具箱及其在带约束的单目标函数值优化中的应用以及利用遗传算法求解有向图的最短路径之后,我经过不断学习工具箱的官方文档以及对源码的研究,更加掌握如何利用遗传算法求解更多有趣的问题了。与前面的文章不同,本篇采用差分进化算法来优化SVM中的参数C和Gamma。(用遗传算法也可以,下面会给出效果比较)首先简单回顾一下Python高性能实用型遗传和进化算
- 差分进化算法_Python进化算法工具箱的使用(三)用进化算法优化SVM参数
weixin_39747075
差分进化算法
前言自从上两篇博客详细讲解了Python遗传和进化算法工具箱及其在带约束的单目标函数值优化中的应用以及利用遗传算法求解有向图的最短路径之后,我经过不断学习工具箱的官方文档以及对源码的研究,更加掌握如何利用遗传算法求解更多有趣的问题了。与前面的文章不同,本篇采用差分进化算法来优化SVM中的参数C和Gamma。(用遗传算法也可以,下面会给出效果比较)首先简单回顾一下Python高性能实用型遗传和进化算
- 径向基函数网络(RBF):让数据“点亮”神经网络的“灯塔”
ningaiiii
机器学习与深度学习神经网络php人工智能
径向基函数网络(RBF):让数据“点亮”神经网络的“灯塔”1.引言径向基函数网络(RadialBasisFunctionNetwork,RBF)是一种特殊的前馈神经网络,它的核心思想是通过“灯塔”来照亮数据的分布。RBF网络使用径向基函数(如高斯函数)作为隐层神经元的激活函数,能够快速学习数据的局部特征,特别适合分类和函数逼近问题。2.算法原理2.1网络结构RBF网络的基本组成包括:输入层:接收原
- 数学:机器学习的理论基石
每天五分钟玩转人工智能
机器学习人工智能
一、数学:机器学习的理论基石机器学习是一种通过数据学习模式和规律的科学。其核心目标是从数据中提取有用的信息,以便对未知数据进行预测和分类。为了实现这一目标,机器学习需要一种数学框架来描述和解决问题。数学在机器学习中起着至关重要的作用,它提供了一种数学模型来描述数据和模式,以及一种数学方法来优化模型。数学在机器学习中的应用非常广泛,涵盖了线性代数、概率论、统计学、微积分、优化等多个领域。这些数学方法
- 差分进化算法DE
DroidMind
智能算法与机器学习差分进化算法
差分进化算法DE属于进化算法,这里算法还包括依次遗传算法、进化策略、进化规划。差分进化算法包括三个基本的操作:变异操作、交叉(重组)操作和选择操作。一、算法建模:1、假设我们希望得到函数f(x)的最优解,这个函数有D个解。2、为函数f(x)设置一个解的组数N,N至少为4。3、这样我们就得到了N组并且每组解的个数为D的集合,它可以使用N个D维参数向量来表示。因为它类似于遗传算法进化一样,是一代一代的
- 【AUTOSAR】VCU开发实际项目讲解(二)----VCU软件与结构描述
大道生
单片机嵌入式硬件AUTOSAR26262VCU汽车
VCU软件描述VCU软件架构主要分为底层软件驱动和应用层控制策略,其中应用层控制策略通过基于模型的开发,自动生成代码并可与底层驱动软件实现无缝连接。VCU软件通过BOOTLOADER和CAN总线进行更新刷写。标定及诊断支持CCP/XCP标定协议支持UDS诊断协议及SAEJ1939诊断协议故障存储:128KIIC外扩EEPROM提供程序刷新Bootloader软件工具基于CAN总线的控制器刷新工具支
- 无需插件,OmniGen 凭文本指令读懂图像,多样生成随心掌控
算家云
模型构建python开发语言AI模型图像生成文字转图像人工智能OmniGen
一、介绍OmniGen是一个统一的图像生成模型,可用于执行各种任务,包括但不限于文本到图像生成、主题驱动生成、身份保留生成、图像编辑和图像条件生成。OmniGen不需要额外的插件或操作,它可以根据文本提示自动识别输入图像中的特征(例如,所需的对象、人体姿势、深度映射)可以通过OmniGen灵活地控制图像生成:引用表达式生成:你可以输入多个图像,并使用简单的通用语言来引用这些图像中的对象。OmniG
- WAVGATvcu控制器应用层软件:策略开发与实际应用
NhTvp94c
程序人生
WAVGATvcu控制器应用层软件,策略说明。整车控制器策略开发,应用层软件,在售车型最新版本软件。按照ASPIC开发流程开发,基于AUTOSAR架构开发,满足功能安全ASILC。模型和策略说明可以分开出。都是量产车型在用,不是仿真WAVGATvcu控制器应用层软件:策略开发与实际应用引言WAVGATvcu控制器应用层软件是一款在汽车工业中备受瞩目的软件产品,它不仅严格按照ASPIC(汽车电子系统
- 【机器学习:二十六、决策树】
KeyPan
机器学习机器学习决策树人工智能算法深度学习数据挖掘
1.决策树概述决策树是一种基于树状结构的监督学习算法,既可以用于分类任务,也可以用于回归任务。其主要通过递归地将数据划分为子集,从而生成一个具有条件结构的树模型。核心概念节点(Node):每个节点表示一个特定的决策条件。根节点(RootNode):树的起点,包含所有样本。分支(Branch):每个分支代表一个条件划分的结果。叶节点(LeafNode):终止节点,表示最终的决策结果。优点直观可解释:
- 差分进化算法(Differential evolution,DE)(附详细注释的Python代码)
XijueJa
算法python开发语言
概念与基本原理差分进化算法(DifferentialEvolution,简称DE)是一种基于种群的随机优化算法,由Storm和Price在1995年提出。它主要应用于解决非线性、非凸、连续和离散的优化问题。DE算法以其简单性、鲁棒性和高效性而受到广泛关注。差分进化算法的基本思想是通过模拟自然进化过程中的遗传和变异机制来寻找问题的最优解,类似于遗传算法。通过变异、交叉与选择,使得初始化的种群不断朝最
- 手把手教你 AI 顾投:在 Ollama 中使用 Python 调用金融 API 服务
老余捞鱼
AI探讨与学习人工智能python金融llama
作者:老余捞鱼原创不易,转载请标明出处及原作者。写在前面的话:尽管Ollama本身不是一个大型语言模型(LLM)开发工具,而是一个LLM的平台。但它最近宣布了其系统中直接使用工具调用的功能,本文主要介绍了最新版本的主要更新,特别是关于功能调用的使用,并演示了如何在Ollama中使用Python调用外部API服务。一、部署Ollama在本地运行1.1设置开发环境在开始编写代码之前,最好的做法是建立一
- SQL数据分析(简单版)
编程星空
扩展知识sql数据库
一、常见数据库分类(1)关系型数据库采用关系模型组织数据的数据库,以行和列的形式存储数据,形成数据表,一组数据表组成了数据库(2)非关系型数据库非关系型数据库在严格意义上不是一种数据库,应该是一种数据结构化存储方法的集合,可以是文档或者键值对等。二、数据库常用功能(1)表数据表是数据库中存储数据的基本组成单位,例如用户信息表、订单表、采购表等。(2)查询查询是数据库中应用最多的对象之一,最常用的功
- “AI 自动化效能评估系统:开启企业高效发展新征程
上海拔俗网络
java团队开发
在当今数字化飞速发展的时代,企业面临着日益激烈的市场竞争,如何提升效率、降低成本成为了企业生存与发展的关键。AI自动化效能评估系统应运而生,它如同一把智能钥匙,为企业开启了高效发展的新征程。AI自动化效能评估系统,简单来说,就是利用人工智能技术对企业的各项业务流程、生产环节以及员工工作表现等进行全方位、自动化的评估。它能够快速收集海量的数据,并通过先进的算法模型对这些数据进行深度分析,从而精准地判
- 力扣刷题之——旋转矩阵
say-input
矩阵leetcode算法
给你一幅由N×N矩阵表示的图像,其中每个像素的大小为4字节。请你设计一种算法,将图像旋转90度。不占用额外内存空间能否做到?示例1:给定matrix=[[1,2,3],[4,5,6],[7,8,9]],原地旋转输入矩阵,使其变为:[[7,4,1],[8,5,2],[9,6,3]]作者:力扣(LeetCode)链接:https://leetcode.cn/leetbook/read/array-an
- 大模型系列-GPT算法
樨潮
人工智能
https://blog.csdn.net/None_Pan/article/details/106392965
- 力扣502-IPO-hard-贪心,优先队列 -java
小吴同学GOGOGO
算法java数据结构
思路:本题可以先构造处一个模型,我们的目的在于满足小于等于w的基础上,使得加上profits最大即可,因为是纯利润,不需要考虑w-capital的情况,所以我们只需要构造一个大根堆将所有满足条件的profits加入到堆中即可。st.w>=capitals[i].代码://@author:hairu,WU,fduclassSolution{publicintfindMaximizedCapital(
- C#中的异步编程模型
神之王楠
c#
在C#中,async和await关键字是用于异步编程的重要部分,它们允许你以同步代码的方式编写异步代码,从而提高应用程序的响应性和吞吐量。这种异步编程模型在I/O密集型操作(如文件读写、网络请求等)中特别有用,因为它允许线程在等待I/O操作完成时释放,从而执行其他工作。基本概念async:这是一个修饰符,用于标记一个方法、lambda表达式或匿名方法为异步的。异步方法包含一个或多个await表达式
- LeetCode 1426 题:数元素解题全解析
MasterNeverDown
leetcode算法职场和发展
LeetCode1426题:数元素解题全解析在算法的世界里,每一道题目都是一次挑战与探索。今天,我们来深入剖析LeetCode上的一道有趣题目——1426.数元素。一、题目剖析给定一个整数数组arr,这里有着独特的计数规则:对于元素x,唯有当x+1也在数组arr中时,这个x才能被记为1个数。特别要注意的是,若数组arr中有重复的数,每个重复的数都要单独依据此规则进行计算。比如,示例1中输入arr=
- HarmonyOS Next模型剪枝方法与实践
SameX-4869
harmonyos华为
本文旨在深入探讨华为鸿蒙HarmonyOSNext系统(截止目前API12)中模型剪枝相关技术细节,基于实际开发实践进行总结。主要作为技术分享与交流载体,难免错漏,欢迎各位同仁提出宝贵意见和问题,以便共同进步。本文为原创内容,任何形式的转载必须注明出处及原作者。一、模型剪枝原理与类型(一)基本原理在HarmonyOSNext的模型世界里,模型剪枝就像是给一棵枝繁叶茂的大树修剪枝叶,去除那些对整体结
- HarmonyOS Next模型轻量化中的数据处理优化
SameX-4869
harmonyos华为
本文旨在深入探讨华为鸿蒙HarmonyOSNext系统(截止目前API12)中模型轻量化相关的数据处理优化技术细节,基于实际开发实践进行总结。主要作为技术分享与交流载体,难免错漏,欢迎各位同仁提出宝贵意见和问题,以便共同进步。本文为原创内容,任何形式的转载必须注明出处及原作者。一、数据处理对模型轻量化的影响(一)重要性分析在HarmonyOSNext的模型世界里,数据处理就像是为模型准备食材的厨师
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那