- FP16、BF16、INT8、INT4精度模型加载所需显存以及硬件适配的分析
herosunly
大模型精度BF16硬件适配
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了FP16、INT8、INT4精度模型加载占用显存大小的分析,希望对学习大
- WRFDA资料同化系统在区域数值预报中的参数优化与敏感性分析
jwwkyjspt
水文大气气象气象海洋大气水文
数值预报已经成为提升预报质量的重要手段,而模式初值质量是决定数值预报质量的重要环节。资料同化作为提高模式初值质量的有效方法,成为当前气象、海洋和大气环境和水文等诸多领域科研、业务预报中的关键科学方法。资料同化新方法的快速发展,气象常规资料、卫星遥感观测和大气环境等多种资料日益增加,为资料同化的有效应用奠定了坚实的科学基础,也导致许多新的复杂科学问题,增加了实际应用的难度。为有效提升广大科研、业务人
- Netty学习路线图 - 第二阶段:Java NIO基础
by.G
学习javanio
Netty学习路线图-第二阶段:JavaNIO基础Netty学习系列之二本文是Netty学习路线的第二篇,重点讲解JavaNIO的核心概念及编程模型,这是理解Netty设计理念的关键基础。引言在上一篇文章中,我们介绍了学习Netty的第一阶段:Java基础与网络编程基础。本篇文章我们将深入探讨JavaNIO(NewI/O或Non-blockingI/O)的核心概念和编程模型,这是理解Netty框架
- 『大模型笔记』KV缓存:Transformer中的内存使用!
AI大模型前沿研究
大模型笔记缓存transformerKVcache大模型LLM
『大模型笔记』KV缓存:Transformer中的内存使用!文章目录一.KV缓存:Transformer中的内存使用!1.1.介绍1.2.自注意力机制回顾1.3.KV缓存的工作原理1.4.内存使用和示例1.4.1.存储键值缓存需要多少内存1.4.2.Example:OPT-30B(300亿参数)四.参考文献进一步阅读:加速GPT-KV缓存:https://www.dipkumar.dev/beco
- C++ 11 中 condition_variable 的探索与实践
码事漫谈
c++11c++java数据库
文章目录一、条件变量的基本概念1.1条件变量的定义1.2条件变量与互斥锁的配合二、条件变量的基本用法2.1常见的操作2.2示例:生产者-消费者模型代码说明三、深入理解条件变量3.1条件变量的底层实现3.2条件变量与忙等待的对比3.3提升性能的注意事项避免虚假唤醒最小化锁的持有时间四、条件变量的应用场景4.1生产者-消费者模型4.2读者-写者模型4.3线程池五、条件变量的相关类和成员函数5.1相关类
- 智能办公与科研革命:ChatGPT+DeepSeek大模型在论文撰写、数据分析与AI建模中的实践指南
jwwkyjspt
机器学习SCI论文人工智能chatgpt语言模型机器学习
随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数据分析和优化机器学习模型。ChatGPT和DeepSeek能够快速理解和生成复杂的语言,帮助研究人员在撰写论文时提高效率,不仅生成高质量的文章内容,还能优化论文结构和语言表达。在数据分析方面
- 初学Spring AI 笔记
笑衬人心。
大模型学习spring人工智能笔记
目录SpringAI简介依赖与环境配置基础概念集成OpenAI(或其他LLM提供商)Prompt模板引擎Embedding与向量数据库SpringAIChatClient使用SpringAI和LangChain对比常见问题与建议SpringAI简介SpringAI是Spring团队推出的人工智能集成框架,旨在简化AI模型(如OpenAI、HuggingFace、Mistral、AzureOpenA
- AI新高度——DEEPSEEK
数字隐士·赛博智者
ai
DeepSeek是由中国人工智能公司「深度求索」开发的一系列高性能大语言模型产品及相关技术体系,其定位为通用人工智能(AGI)探索者,目前已发展成为全球增长最快、性能领先的开源模型之一。下面是关于DeepSeek的详细介绍:一、DeepSeek的开发者与背景公司名称:杭州深度求索人工智能基础技术研究有限公司(成立于2023年)核心支持:由中国知名对冲基金「高毅资产」创立并提供资金与技术资源
- vue+three.js 加载fbx动画模型
资深前端之路
threeJsjavascriptvue.js前端
嗨,我是小路。今天主要和大家分享的主题是“vue+three.js加载fbx动画模型”。在现代网页开发中,3D图形和动画的应用越来越广泛,从产品展示、虚拟展厅到游戏、教育等领域,三维技术正在不断刷新用户体验。而作为前端开发者,如何将高性能的3D动画无缝集成到Vue项目中?今天从网上找了一个fbx动画模型,然后将其加载出来,并让模型动起来。项目示意图1.FBXLoader加载器定义:主要用来加载fb
- 【机器学习&深度学习】适合微调的模型选型指南
一叶千舟
深度学习【应用必备常识】深度学习人工智能
目录一、不同规模模型微调适用性二、微调技术类型对显存的影响三、选择建议(根据你的硬件)四、实际模型推荐五、不同模型适合人群六、推荐几个“非常适合微调”的模型七、推荐使用的微调技术八、场景选择示例场景1:智能客服(中文)场景2:法律问答(中文RAG)场景3:医学问答/健康咨询场景4:AI写作助手(中英文)场景5:代码补全/AI编程助手对比总结表九、不同参数模型特点9.1参数规模vs能力9.2微型模型
- SQL语句全攻略:从基础到进阶的编程之旅
奔跑吧邓邓子
必备核心技能sql数据库基础语法高级应用
目录一、引言二、SQL基础语法2.1SQL语句写法顺序2.2关联查询2.3数据处理常用函数和运算符三、数据库和表的基本操作3.1创建数据库3.2使用数据库3.3创建表四、基础增删改查操作4.1插入数据(增)4.2查询数据(查)4.3更新数据(改)4.4删除数据(删)五、复杂关系操作5.1一对多关系操作5.2多对多关系操作六、SQL优化技巧6.1索引的使用6.2避免子查询6.3其他优化建议七、SQL
- AI编程工具深度对比:腾讯云代码助手CodeBuddy、Cursor与通义灵码
scuter_yu
AI编程云计算
腾讯云代码助手CodeBuddy智能代码补全:基于上下文和编辑行为预测代码,支持行内补全、函数块生成及注释转代码,覆盖200+编程语言和框架,可减少70%以上的键盘输入。Craft智能体:支持自然语言驱动的多文件协同开发,能自动拆解任务并生成关联页面代码,还支持从用户需求转到研发需求,最后拆分成迭代执行。代码评审与优化:从代码规范性、性能优化、安全漏洞等多个维度对代码进行全面审查,生成详细报告并提
- 基于llama-factory+ollama+vllm加速大模型训推生产
zwxu_
大模型专栏llama人工智能大模型
目录一、名称解释1.1产品定义二、llama-factory工具使用2.1基础镜像2.2、模型训练2.2.1以Qwen2.5-7B-Instruct为例
- IntelliJ IDEA 加速优化指南
中国lanwp
intellij-ideajavaide
IntelliJIDEA加速优化指南IntelliJIDEA是一款功能强大的IDE,但随着项目规模增大和长期使用,可能会出现性能下降的情况。以下是一些有效的加速优化方法:1.基础配置优化内存分配调整修改idea.vmoptions文件(位置:Help>EditCustomVMOptions)-Xms2048m-Xmx4096m-XX:ReservedCodeCacheSize=1024m根据机器配
- 基于langchain的法律助手工作流的搭建
一尾清风915
langchain语言模型python人工智能chatgptai
该工作流有四个llm组成,包括三个worker以及一个planner。planner用于识别用户输入,将其划分为具体任务并调用相应的worker。worker则根据输入进行工作,三个worker分别用于法条翻译,法条查询以及案例分析。其中planner、lawtrans、lasearch使用的都是gpt4,embedding模型使用的是openai的text-embedding-ada-002。c
- 全面提升游戏体验的雪域冰狐工具箱1.09
mater lai
本文还有配套的精品资源,点击获取简介:雪域冰狐工具箱1.09是一款专注于增强游戏玩家体验的实用工具集。它包含了诸如统一游戏菜单界面、自定义设置、性能优化、多种游戏辅助工具以及安全防护措施等功能。此外,工具箱提供良好的兼容性、用户友好的界面设计,并定期进行更新以满足用户需求。工具箱通过简化操作流程和提供安装与技术支持,旨在为用户提供安全、便捷的游戏辅助体验。1.游戏菜单界面设计的统一理念与实践1.1
- 【机器学习&深度学习】本地部署 vs API调用:关键看显存!
一叶千舟
深度学习【应用必备常识】深度学习人工智能
目录一、本地部署VSAPI调用1.模型运行方式2.性能与速度3.成本4.隐私与安全5.何时选择哪种方式?二、为什么推荐本地部署?1️⃣零依赖网络和外部服务,更可靠稳定2️⃣无调用次数限制,更适合高频或批量推理3️⃣避免长期API费用,节省成本4️⃣保护用户隐私和数据安全5️⃣可自定义、深度优化6️⃣加载一次即可复用,低延迟高性能7️⃣离线可用(重要!)三、适合本地部署的情况四、本地部署条件4.1模
- Python 机器学习实战:泰坦尼克号生还者预测 (从数据探索到模型构建)
程序员阿超的博客
Pythonpython机器学习开发语言泰坦尼克号KaggleScikit-learn实战教程
引言:挑战介绍泰坦尼克号的沉没是历史上最著名的海难之一。除了其悲剧色彩,它还为数据科学提供了一个经典且引人入胜的入门项目。Kaggle平台上的“Titanic:MachineLearningfromDisaster”竞赛,要求我们利用乘客数据来预测哪些人更有可能在这场灾难中幸存。这是一个典型的二元分类问题:目标变量Survived只有两个值,0(遇难)或1(生还)。这个项目之所以经典,是因为它涵盖
- 【unity游戏开发——网络】网络协议、TCP vs UDP 本质区别
向宇it
【unity游戏开发——网络】网络网络协议unity游戏引擎c#tcp/ipudp
注意:考虑到热更新的内容比较多,我将热更新的内容分开,并全部整合放在【unity游戏开发——网络】专栏里,感兴趣的小伙伴可以前往逐一查看学习。文章目录一、网络协议概述二、OSI七层模型三、TCP/IP四层模型四、核心传输协议对比1、TCPvsUDP本质区别2、TCP关键机制详解2.1三次握手建立连接2.2四次挥手断开连接五、常见面试题精要六、总结1、TCP:2、UDP:专栏推荐完结一、网络协议概述
- LLM大语言模型学习笔记(1)
Arixs666
大语言模型语言模型笔记人工智能
1.概念大语言模型(LLM,LargeLanguageModel),也称大型语言模型,是一种旨在理解和生成人类语言的人工智能模型。LLM通常指包含数百亿(或更多)参数的语言模型,它们在海量的文本数据上进行训练,从而获得对语言深层次的理解。2.能力2.1涌现能力区分大语言模型(LLM)与以前的预训练语言模型(PLM)最显著的特征之一是它们的涌现能力。涌现能力是一种令人惊讶的能力,它在小型模型中不明显
- 大语言模型LLM原理篇
大模型席卷全球,彷佛得模型者得天下。对于IT行业来说,以后可能没有各种软件了,只有各种各样的智体(Agent)调用各种各样的API。在这种大势下,笔者也阅读了很多大模型相关的资料,和很多新手一样,开始脑子里都是一团乱麻,随着相关文章越读越多,再进行内容梳理,终于理清了一条清晰的脉络。笔者写原理篇时心情是有些惴惴不安的,因为毕竟对大模型的研究有限,缺乏深度。但是,还是觉得有必要记录一下学习理解心得,
- 大语言模型(LLM)笔记
笑衬人心。
大模型学习语言模型笔记人工智能
一、什么是大语言模型(LLM)?LLM(LargeLanguageModel)是基于Transformer架构构建,并在海量文本语料上训练出的具备自然语言理解和生成能力的深度神经网络模型。其本质任务是**预测下一个token(词/字/符号)**的概率分布,但通过大规模参数和数据的支持,表现出类人智能的行为。二、核心架构:Transformer由Google在2017年提出,是目前LLM的主流架构。
- 深入游戏开发:瓦片地图与游戏引擎集成
蓉蓉蓉蓉
瓦片地图游戏引擎Lua脚本库存管理动态滚动
背景简介在游戏开发领域,瓦片地图技术(Tilemap)是实现2D游戏世界构建的重要工具。它通过在网格上排列和渲染预制的瓦片图像,来创建游戏场景。本文将基于书籍章节内容,探讨瓦片地图的构建与优化,以及如何将脚本有效集成到游戏引擎中。瓦片地图构建与优化瓦片地图的构建涉及几个关键步骤,如位图的构建、库存和物品的管理。书中提到,位图可以通过编程方式动态生成,也可以从文件中加载。例如,通过调用loadTil
- 高效实现滚动地图:瓦片渲染技术
郑丢丢
瓦片渲染游戏开发内存优化滚动地图渲染技术
高效实现滚动地图:瓦片渲染技术背景简介在游戏开发中,创建大型、动态的地图是一大挑战,尤其是对于内存的优化要求极高。传统的背景图方式不仅占内存,而且在处理大型地图时效率低下。本文介绍了一种被称为瓦片渲染的技术,它通过将大地图分解为小的图像块(瓦片),有效减少了内存的使用,同时还能实现流畅的滚动效果。瓦片渲染的原理瓦片渲染是一种处理大型游戏地图的方法,它不依赖于一个大型的位图,而是通过数组和小图像块(
- Milvus向量数据库入门指南
longfei.li
milvus数据库人工智能
一、Milvus简介Milvus是一个开源的向量数据库,专为AI应用和向量相似度搜索而设计,以加速非结构化数据的检索。自2019年创建以来,Milvus专注于存储、索引和管理由深度神经网络和其他机器学习模型生成的海量嵌入向量。其能够处理万亿级别的向量索引任务。Milvus的核心优势在于其高效的索引机制,它支持多种索引类型,包括FLAT、IVF_FLAT、IVF_SQ8、IVF_PQ和HNSW等。这
- Linux性能优化原理和实战 文章汇总【建议收藏】
锅锅来了
Linux性能优化原理和实战linux性能优化运维
Linux性能优化原理和实战【网络】Linux内核优化实战-net.ipv4.neigh.default.gc_stale_time发布于2025-07-0112:43:21【网络】Linux内核优化实战-net.ipv4.conf.default.arp_announce发布于2025-07-0112:39:34【网络】Linux内核优化实战-net.ipv4.conf.all.rp_filte
- kotlin协程的使用详解
一、协程是什么协程基于线程,它是轻量级线程。Kotlin协程是一种基于挂起函数(suspendfunctions)和结构化并发(structuredconcurrency)的轻量级并发编程模型,允许开发者以接近同步代码的简洁方式编写异步、非阻塞的逻辑。其核心是通过协作式任务调度(而非抢占式线程切换),在单线程或多线程环境中高效管理并发任务,避免传统线程的资源消耗和复杂性,同时提供直观的错误处理和生
- JVM——垃圾回收
五月茶
JVMjvm
在Java开发中,JVM不仅负责运行Java字节码,还通过自动内存管理机制帮助开发者避免手动内存管理的复杂性。1.JVM内存模型JVM的内存模型主要包括以下几个部分:方法区(JDK8之后叫元空间):存储类信息,常量池,静态变量堆:所有线程共享的一块内存区域,存放对象实例栈:线程私有程序计数器:线程私有,记录当前线程执行的字节码行号本地方法栈:为Native方法服务2.Java堆的划分年轻代Surv
- LeetCode 70:爬楼梯|递归到动态规划全路径解析
kiki_2411
算法设计与分析leetcode动态规划算法
本篇博客将通过LeetCode第70题“ClimbingStairs”为例,系统讲解从递归暴力解法到记忆化搜索、再到动态规划及空间优化的四种典型思路,适合算法初学者深入掌握递归与DP基础。文章目录LeetCode70|爬楼梯一、题目描述二、思路分析三、方法一:递归(不带记忆)思路C++代码四、方法二:递归+记忆化搜索(Top-DownDP)思路五、方法三:动态规划(Bottom-Up)思路六、方法
- Learning Fully Convolutional Networks for Iterative Non-blind Deconvolution论文阅读
青铜锁00
#退化论文阅读深度学习论文阅读图像处理
LearningFullyConvolutionalNetworksforIterativeNon-blindDeconvolution1.研究目标与实际问题1.1研究目标1.2实际意义2.创新方法与模型设计2.1核心框架:迭代式梯度域处理2.1.1模型架构2.2关键技术实现2.2.1梯度域去噪网络2.2.2解卷积模块(核心公式实现)2.2.3损失函数设计2.2.4超参数端到端学习2.3与传统方法
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep