运行Hadoop自带的wordcount单词统计程序

1.使用示例程序实现单词统计

(1)wordcount程序

wordcount程序在hadoop的share目录下,如下:

[root@linuxidc mapreduce]# pwd 
/usr/local/hadoop/share/hadoop/mapreduce
[root@linuxidc mapreduce]# ls 
hadoop-mapreduce-client-app-2.6.5.jar        hadoop-mapreduce-client-jobclient-2.6.5-tests.jar 
hadoop-mapreduce-client-common-2.6.5.jar      hadoop-mapreduce-client-shuffle-2.6.5.jar 
hadoop-mapreduce-client-core-2.6.5.jar        hadoop-mapreduce-examples-2.6.5.jar 
hadoop-mapreduce-client-hs-2.6.5.jar          lib 
hadoop-mapreduce-client-hs-plugins-2.6.5.jar  lib-examples 
hadoop-mapreduce-client-jobclient-2.6.5.jar  sources

就是这个hadoop-mapreduce-examples-2.6.5.jar程序。
 
(2)创建HDFS数据目录
    创建一个目录,用于保存MapReduce任务的输入文件:

[root@linuxidc ~]# hadoop fs -mkdir -p /data/wordcount

    创建一个目录,用于保存MapReduce任务的输出文件:

[root@linuxidc ~]# hadoop fs -mkdir /output

    查看刚刚创建的两个目录:

[root@linuxidc ~]# hadoop fs -ls / 
drwxr-xr-x  - root supergroup          0 2017-09-01 20:34 /data
drwxr-xr-x  - root supergroup          0 2017-09-01 20:35 /output

(3)创建一个单词文件,并上传到HDFS
    创建的单词文件如下:

 [root@linuxidc ~]# cat myword.txt  
linuxidc yyh 
yyh xplinuxidc 
katy ling 
yeyonghao linuxidc 
xpleaf katy

    上传该文件到HDFS中:

[root@linuxidc ~]# hadoop fs -put myword.txt /data/wordcount

    在HDFS中查看刚刚上传的文件及内容:

[root@linuxidc ~]# hadoop fs -ls /data/wordcount 
-rw-r--r--  1 root supergroup        57 2017-09-01 20:40 /data/wordcount/myword.txt 
[root@linuxidc ~]# hadoop fs -cat /data/wordcount/myword.txt 
linuxidc yyh 
yyh xplinuxidc 
katy ling 
yeyonghao linuxidc 
xpleaf katy

(4)运行wordcount程序
    执行如下命令:

[root@linuxidc ~]# hadoop jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.5.jar wordcount /data/wordcount /output/wordcount 
... 
17/09/01 20:48:14 INFO mapreduce.Job: Job job_local1719603087_0001 completed successfully 
17/09/01 20:48:14 INFO mapreduce.Job: Counters: 38 
        File System Counters 
                FILE: Number of bytes read=585940 
                FILE: Number of bytes written=1099502 
                FILE: Number of read operations=0 
                FILE: Number of large read operations=0 
                FILE: Number of write operations=0 
                HDFS: Number of bytes read=114 
                HDFS: Number of bytes written=48 
                HDFS: Number of read operations=15 
                HDFS: Number of large read operations=0 
                HDFS: Number of write operations=4 
        Map-Reduce Framework 
                Map input records=5 
                Map output records=10 
                Map output bytes=97 
                Map output materialized bytes=78 
                Input split bytes=112 
                Combine input records=10 
                Combine output records=6 
                Reduce input groups=6 
                Reduce shuffle bytes=78 
                Reduce input records=6 
                Reduce output records=6 
                Spilled Records=12 
                Shuffled Maps =1 
                Failed Shuffles=0 
                Merged Map outputs=1 
                GC time elapsed (ms)=92 
                CPU time spent (ms)=0 
                Physical memory (bytes) snapshot=0 
                Virtual memory (bytes) snapshot=0 
                Total committed heap usage (bytes)=241049600 
        Shuffle Errors 
                BAD_ID=0 
                CONNECTION=0 
                IO_ERROR=0 
                WRONG_LENGTH=0 
                WRONG_MAP=0 
                WRONG_REDUCE=0 
        File Input Format Counters  
                Bytes Read=57 
        File Output Format Counters  
                Bytes Written=48

(5)查看统计结果
    如下:

[root@linuxidc ~]# hadoop fs -cat /output/wordcount/part-r-00000 
katy    2 
linuxidc    2 
ling    1 
xplinuxidc  2 
yeyonghao      1 
yyh    2

你可能感兴趣的:(Hadoop)