java并发系列五(并发集合,原子类)

1,并发集合

一,concurrentHashMap!!!(超重点)
这里对concurrentHashMap的讲解分为jdk7和jdk8。
两个版本有了很大的变化
java7中着重讲解分段锁,java8中concurrentHashMap是基于数组加链表加红黑树实现的
1,java7中concurrentHashMap的实现
锁的粒度的减少有2钟方式,锁分解和锁分段。java7中concurrentHashMap就是基于锁分段实现的。它的实现使用了一个包含16个锁的数组,即Segment数组。默认每个锁具有散列桶的1/16.其中第N个桶由,其中,第N个散列桶由第(N mod 16)来保护。Segment数组长度即为并发数。

java并发系列五(并发集合,原子类)_第1张图片
每个Segment元素存储的是HashEntry数组+链表。
put操作
会进行两次hash去定位Segment下的HashEntry的位置。然后接下来,我们注意一哈。。。首先我们看一下这个,如下

static class Segment extends ReentrantLock implements Serializable {

它继承了锁的特性,当定位到位置时,会通过tryLock()尝试获取锁,如果获得就插入。否则自旋获取锁,超过指定次数就挂起,等待唤醒。
2,java8中concurrentHashMap的实现
上面讲过,java8中,concurrentHashMap是由红黑树+链表+数组实现的。
首先,来讲一下concurrentHashMap中的几个重要内部类
Node,TreeNode,TreeBin

Node
Node是存储结构的基本单元,实现了Map.Entry接口。
源码如下。

static class Node implements Map.Entry {
    //链表的数据结构
    final int hash;
    final K key;
    //val和next都会在扩容时发生变化,所以加上volatile来保持可见性和禁止重排序
    volatile V val;
    volatile Node next;
    Node(int hash, K key, V val, Node next) {
        this.hash = hash;
        this.key = key;
        this.val = val;
        this.next = next;
    }
    public final K getKey()       { return key; }
    public final V getValue()     { return val; }
    public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
    public final String toString(){ return key + "=" + val; }
    //不允许更新value 
    public final V setValue(V value) {
        throw new UnsupportedOperationException();
    }
    public final boolean equals(Object o) {
        Object k, v, u; Map.Entry e;
        return ((o instanceof Map.Entry) &&
                (k = (e = (Map.Entry)o).getKey()) != null &&
                (v = e.getValue()) != null &&
                (k == key || k.equals(key)) &&
                (v == (u = val) || v.equals(u)));
    }
    //用于map中的get()方法,子类重写
    Node find(int h, Object k) {
        Node e = this;
        if (k != null) {
            do {
                K ek;
                if (e.hash == h &&
                    ((ek = e.key) == k || (ek != null && k.equals(ek))))
                    return e;
            } while ((e = e.next) != null);
        }
        return null;
    }
}

很容易看出Node就是一个存储的链表,但只允许进行查找。其中有点需要注意:它对value和next属性设置了volatile同步锁。

TreeNode
TreeNode继承于Node,不同的是它是二叉树的存储结构,并非链表。
用于在红黑树中存储数据。
conCurrentHashMap中链表节点数大于8时会转换成红黑树结构。此时,TreeNode就会代替Node来存储数据,源码如下

static final class TreeNode extends Node {
    //树形结构的属性定义
    TreeNode parent;  // red-black tree links
    TreeNode left;
    TreeNode right;
    TreeNode prev;    // needed to unlink next upon deletion
    boolean red; //标志红黑树的红节点
    TreeNode(int hash, K key, V val, Node next,
             TreeNode parent) {
        super(hash, key, val, next);
        this.parent = parent;
    }
    Node find(int h, Object k) {
        return findTreeNode(h, k, null);
    }
    //根据key查找 从根节点开始找出相应的TreeNode,
    final TreeNode findTreeNode(int h, Object k, Class kc) {
        if (k != null) {
            TreeNode p = this;
            do  {
                int ph, dir; K pk; TreeNode q;
                TreeNode pl = p.left, pr = p.right;
                if ((ph = p.hash) > h)
                    p = pl;
                else if (ph < h)
                    p = pr;
                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
                    return p;
                else if (pl == null)
                    p = pr;
                else if (pr == null)
                    p = pl;
                else if ((kc != null ||
                          (kc = comparableClassFor(k)) != null) &&
                         (dir = compareComparables(kc, k, pk)) != 0)
                    p = (dir < 0) ? pl : pr;
                else if ((q = pr.findTreeNode(h, k, kc)) != null)
                    return q;
                else
                    p = pl;
            } while (p != null);
        }
        return null;
    }
}

TreeBin
上面说过,TreeBin用来包装TreeNode。它提供了转换红黑树的一些条件和锁的控制。它还带了读写锁。部分源码如下

static final class TreeBin extends Node {
    //指向TreeNode列表和根节点
    TreeNode root;
    volatile TreeNode first;
    volatile Thread waiter;
    volatile int lockState;
    // 读写锁状态
    static final int WRITER = 1; // 获取写锁的状态
    static final int WAITER = 2; // 等待写锁的状态
    static final int READER = 4; // 增加数据时读锁的状态
    /**
     * 初始化红黑树
     */
    TreeBin(TreeNode b) {
        super(TREEBIN, null, null, null);
        this.first = b;
        TreeNode r = null;
        for (TreeNode x = b, next; x != null; x = next) {
            next = (TreeNode)x.next;
            x.left = x.right = null;
            if (r == null) {
                x.parent = null;
                x.red = false;
                r = x;
            }
            else {
                K k = x.key;
                int h = x.hash;
                Class kc = null;
                for (TreeNode p = r;;) {
                    int dir, ph;
                    K pk = p.key;
                    if ((ph = p.hash) > h)
                        dir = -1;
                    else if (ph < h)
                        dir = 1;
                    else if ((kc == null &&
                              (kc = comparableClassFor(k)) == null) ||
                             (dir = compareComparables(kc, k, pk)) == 0)
                        dir = tieBreakOrder(k, pk);
                        TreeNode xp = p;
                    if ((p = (dir <= 0) ? p.left : p.right) == null) {
                        x.parent = xp;
                        if (dir <= 0)
                            xp.left = x;
                        else
                            xp.right = x;
                        r = balanceInsertion(r, x);
                        break;
                    }
                }
            }
        }
        this.root = r;
        assert checkInvariants(root);
    }
    ......
}

三个核心方法,主要是对一些结点进行原子操作

//获得在i位置上的Node节点
    static final  Node tabAt(Node[] tab, int i) {
        return (Node)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
    }
        //利用CAS算法设置i位置上的Node节点。之所以能实现并发是因为他指定了原来这个节点的值是多少
        //在CAS算法中,会比较内存中的值与你指定的这个值是否相等,如果相等才接受你的修改,否则拒绝你的修改
        //因此当前线程中的值并不是最新的值,这种修改可能会覆盖掉其他线程的修改结果  有点类似于SVN
    static final  boolean casTabAt(Node[] tab, int i,
                                        Node c, Node v) {
        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
    }
        //利用volatile方法设置节点位置的值
    static final  void setTabAt(Node[] tab, int i, Node v) {
        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
    }

put操作!!!重中之重
源码如下

public V put(K key, V value) {
    return putVal(key, value, false);
}
/** Implementation for put and putIfAbsent */
final V putVal(K key, V value, boolean onlyIfAbsent) {
    if (key == null || value == null) throw new NullPointerException();
    int hash = spread(key.hashCode()); //两次hash,减少hash冲突,可以均匀分布
    int binCount = 0;
    for (Node[] tab = table;;) { //对这个table进行迭代
        Node f; int n, i, fh;
        //这里就是上面构造方法没有进行初始化,在这里进行判断,为null就调用initTable进行初始化,属于懒汉模式初始化
        if (tab == null || (n = tab.length) == 0)
            tab = initTable();
        else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {//如果i位置没有数据,就直接无锁插入
            if (casTabAt(tab, i, null,
                         new Node(hash, key, value, null)))
                break;                   // no lock when adding to empty bin
        }
        else if ((fh = f.hash) == MOVED)//如果在进行扩容,则先进行扩容操作
            tab = helpTransfer(tab, f);
        else {
            V oldVal = null;
            //如果以上条件都不满足,那就要进行加锁操作,也就是存在hash冲突,锁住链表或者红黑树的头结点
            synchronized (f) {
                if (tabAt(tab, i) == f) {
                    if (fh >= 0) { //表示该节点是链表结构
                        binCount = 1;
                        for (Node e = f;; ++binCount) {
                            K ek;
                            //这里涉及到相同的key进行put就会覆盖原先的value
                            if (e.hash == hash &&
                                ((ek = e.key) == key ||
                                 (ek != null && key.equals(ek)))) {
                                oldVal = e.val;
                                if (!onlyIfAbsent)
                                    e.val = value;
                                break;
                            }
                            Node pred = e;
                            if ((e = e.next) == null) {  //插入链表尾部
                                pred.next = new Node(hash, key,
                                                          value, null);
                                break;
                            }
                        }
                    }
                    else if (f instanceof TreeBin) {//红黑树结构
                        Node p;
                        binCount = 2;
                        //红黑树结构旋转插入
                        if ((p = ((TreeBin)f).putTreeVal(hash, key,
                                                       value)) != null) {
                            oldVal = p.val;
                            if (!onlyIfAbsent)
                                p.val = value;
                        }
                    }
                }
            }
            if (binCount != 0) { //如果链表的长度大于8时就会进行红黑树的转换
                if (binCount >= TREEIFY_THRESHOLD)
                    treeifyBin(tab, i);
                if (oldVal != null)
                    return oldVal;
                break;
            }
        }
    }
    addCount(1L, binCount);//统计size,并且检查是否需要扩容
    return null;
}

下面开始讲concurrentHashMap中的方法

## 1,,Put方法(重点!!超重点!!!)
源码如下

/**
 * Initializes table, using the size recorded in sizeCtl.
 */
private final Node[] initTable() {
    Node[] tab; int sc;
    while ((tab = table) == null || tab.length == 0) {//空的table才能进入初始化操作
        if ((sc = sizeCtl) < 0) //sizeCtl<0表示其他线程已经在初始化了或者扩容了,挂起当前线程
            Thread.yield(); // lost initialization race; just spin
        else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {//CAS操作SIZECTL为-1,表示初始化状态
            try {
                if ((tab = table) == null || tab.length == 0) {
                    int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                    @SuppressWarnings("unchecked")
                    Node[] nt = (Node[])new Node[n];//初始化
                    table = tab = nt;
                    sc = n - (n >>> 2);//记录下次扩容的大小
                }
            } finally {
                sizeCtl = sc;
            }
            break;
        }
    }
    return tab;
}

整个流程还是比较清晰的,流程如下
如果没有初始化就先调用initTable()方法来进行初始化过程
如果没有hash冲突就直接CAS插入
如果还在进行扩容操作就先进行扩容
如果存在hash冲突,就加锁来保证线程安全,这里有两种情况,一种是链表形式就直接遍历到尾端插入,一种是红黑树就按照红黑树结构插入,
最后一个如果该链表的数量大于阈值8,就要先转换成黑红树的结构,break再一次进入循环
如果添加成功就调用addCount()方法统计size,并且检查是否需要扩容

2, 初始化方法initTable
首先这里需要重点说一下sizeCtl这个属性,它时控制标识符,不同的值代表不同的含义,如下
-1代表正在初始化
-N 表示有N-1个线程正在进行扩容操作
所以看出concurrentHashMap的初始化只能由一个线程来完成。如果获得初始化权,CAS将sizeCtl设为-1,防止其他线程进入。初始化数组后,将sizeCtl的值改为0.75*n。源码如下

/**
     * Initializes table, using the size recorded in sizeCtl.
     */
    private final Node[] initTable() {
        Node[] tab; int sc;
        while ((tab = table) == null || tab.length == 0) {
                //sizeCtl表示有其他线程正在进行初始化操作,把线程挂起。对于table的初始化工作,只能有一个线程在进行。
            if ((sc = sizeCtl) < 0)
                Thread.yield(); // lost initialization race; just spin
            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {//利用CAS方法把sizectl的值置为-1 表示本线程正在进行初始化
                try {
                    if ((tab = table) == null || tab.length == 0) {
                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                        @SuppressWarnings("unchecked")
                        Node[] nt = (Node[])new Node[n];
                        table = tab = nt;
                        sc = n - (n >>> 2);//相当于0.75*n 设置一个扩容的阈值
                    }
                } finally {
                    sizeCtl = sc;
                }
                break;
            }
        }
        return tab;
    }

3,transfer
当检测到其他线程有扩容操作时,就帮助它一起扩容,而不是等待它扩容完成。源码如下。扩容操作是concurrentHashMap最精华的部分!!在下还是看的头大。大家可以参考本篇博文,比较细致的讲了扩容
https://www.jianshu.com/p/2829fe36a8dd

private final void transfer(Node[] tab, Node[] nextTab) {
        int n = tab.length, stride;
        // 每核处理的量小于16,则强制赋值16
        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
            stride = MIN_TRANSFER_STRIDE; // subdivide range
        if (nextTab == null) {            // initiating
            try {
                @SuppressWarnings("unchecked")
                Node[] nt = (Node[])new Node[n << 1];        //构建一个nextTable对象,其容量为原来容量的两倍
                nextTab = nt;
            } catch (Throwable ex) {      // try to cope with OOME
                sizeCtl = Integer.MAX_VALUE;
                return;
            }
            nextTable = nextTab;
            transferIndex = n;
        }
        int nextn = nextTab.length;
        // 连接点指针,用于标志位(fwd的hash值为-1,fwd.nextTable=nextTab)
        ForwardingNode fwd = new ForwardingNode(nextTab);
        // 当advance == true时,表明该节点已经处理过了
        boolean advance = true;
        boolean finishing = false; // to ensure sweep before committing nextTab
        for (int i = 0, bound = 0;;) {
            Node f; int fh;
            // 控制 --i ,遍历原hash表中的节点
            while (advance) {
                int nextIndex, nextBound;
                if (--i >= bound || finishing)
                    advance = false;
                else if ((nextIndex = transferIndex) <= 0) {
                    i = -1;
                    advance = false;
                }
                // 用CAS计算得到的transferIndex
                else if (U.compareAndSwapInt
                        (this, TRANSFERINDEX, nextIndex,
                                nextBound = (nextIndex > stride ?
                                        nextIndex - stride : 0))) {
                    bound = nextBound;
                    i = nextIndex - 1;
                    advance = false;
                }
            }
            if (i < 0 || i >= n || i + n >= nextn) {
                int sc;
                // 已经完成所有节点复制了
                if (finishing) {
                    nextTable = null;
                    table = nextTab;        // table 指向nextTable
                    sizeCtl = (n << 1) - (n >>> 1);     // sizeCtl阈值为原来的1.5倍
                    return;     // 跳出死循环,
                }
                // CAS 更扩容阈值,在这里面sizectl值减一,说明新加入一个线程参与到扩容操作
                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                        return;
                    finishing = advance = true;
                    i = n; // recheck before commit
                }
            }
            // 遍历的节点为null,则放入到ForwardingNode 指针节点
            else if ((f = tabAt(tab, i)) == null)
                advance = casTabAt(tab, i, null, fwd);
            // f.hash == -1 表示遍历到了ForwardingNode节点,意味着该节点已经处理过了
            // 这里是控制并发扩容的核心
            else if ((fh = f.hash) == MOVED)
                advance = true; // already processed
            else {
                // 节点加锁
                synchronized (f) {
                    // 节点复制工作
                    if (tabAt(tab, i) == f) {
                        Node ln, hn;
                        // fh >= 0 ,表示为链表节点
                        if (fh >= 0) {
                            // 构造两个链表  一个是原链表  另一个是原链表的反序排列
                            int runBit = fh & n;
                            Node lastRun = f;
                            for (Node p = f.next; p != null; p = p.next) {
                                int b = p.hash & n;
                                if (b != runBit) {
                                    runBit = b;
                                    lastRun = p;
                                }
                            }
                            if (runBit == 0) {
                                ln = lastRun;
                                hn = null;
                            }
                            else {
                                hn = lastRun;
                                ln = null;
                            }
                            for (Node p = f; p != lastRun; p = p.next) {
                                int ph = p.hash; K pk = p.key; V pv = p.val;
                                if ((ph & n) == 0)
                                    ln = new Node(ph, pk, pv, ln);
                                else
                                    hn = new Node(ph, pk, pv, hn);
                            }
                            // 在nextTable i 位置处插上链表
                            setTabAt(nextTab, i, ln);
                            // 在nextTable i + n 位置处插上链表
                            setTabAt(nextTab, i + n, hn);
                            // 在table i 位置处插上ForwardingNode 表示该节点已经处理过了
                            setTabAt(tab, i, fwd);
                            // advance = true 可以执行--i动作,遍历节点
                            advance = true;
                        }
                        // 如果是TreeBin,则按照红黑树进行处理,处理逻辑与上面一致
                        else if (f instanceof TreeBin) {
                            TreeBin t = (TreeBin)f;
                            TreeNode lo = null, loTail = null;
                            TreeNode hi = null, hiTail = null;
                            int lc = 0, hc = 0;
                            for (Node e = t.first; e != null; e = e.next) {
                                int h = e.hash;
                                TreeNode p = new TreeNode
                                        (h, e.key, e.val, null, null);
                                if ((h & n) == 0) {
                                    if ((p.prev = loTail) == null)
                                        lo = p;
                                    else
                                        loTail.next = p;
                                    loTail = p;
                                    ++lc;
                                }
                                else {
                                    if ((p.prev = hiTail) == null)
                                        hi = p;
                                    else
                                        hiTail.next = p;
                                    hiTail = p;
                                    ++hc;
                                }
                            }
                            // 扩容后树节点个数若<=6,将树转链表
                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                                    (hc != 0) ? new TreeBin(lo) : t;
                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                                    (lc != 0) ? new TreeBin(hi) : t;
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            setTabAt(tab, i, fwd);
                            advance = true;
                        }
                    }
                }
            }
        }
    }

并发操作中的原子类

原子类是基于CAS实现的,这里只讲一下AtomicInteger
tomicInteger 中主要实现了整型的原子操作,防止并发情况下出现异常结果,其内部主要依靠JDK 中的unsafe 类操作内存中的数据来实现的。volatile 修饰符保证了value在内存中其他线程可以看到其值得改变。CAS操作保证了AtomicInteger 可以安全的修改value 的值。

package java.util.concurrent.atomic;
import sun.misc.Unsafe;

public class AtomicInteger extends Number implements java.io.Serializable {
    private static final long serialVersionUID = 6214790243416807050L;

    // setup to use Unsafe.compareAndSwapInt for updates
    private static final Unsafe unsafe = Unsafe.getUnsafe();
    private static final long valueOffset;

    static {
      try {
        valueOffset = unsafe.objectFieldOffset
            (AtomicInteger.class.getDeclaredField("value"));
      } catch (Exception ex) { throw new Error(ex); }
    }

    private volatile int value;

    public AtomicInteger(int initialValue) {
        value = initialValue;
    }

    public AtomicInteger() {
    }

    public final int get() {
        return value;
    }

    public final void set(int newValue) {
        value = newValue;
    }

    public final void lazySet(int newValue) {
        unsafe.putOrderedInt(this, valueOffset, newValue);
    }

    public final int getAndSet(int newValue) {
        for (;;) {
            int current = get();
            if (compareAndSet(current, newValue))
                return current;
        }
    }

    public final boolean compareAndSet(int expect, int update) {
    return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
    }

    public final boolean weakCompareAndSet(int expect, int update) {
    return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
    }

    public final int getAndIncrement() {
        for (;;) {
            int current = get();
            int next = current + 1;
            if (compareAndSet(current, next))
                return current;
        }
    }

    public final int getAndDecrement() {
        for (;;) {
            int current = get();
            int next = current - 1;
            if (compareAndSet(current, next))
                return current;
        }
    }

    public final int getAndAdd(int delta) {
        for (;;) {
            int current = get();
            int next = current + delta;
            if (compareAndSet(current, next))
                return current;
        }
    }

    public final int incrementAndGet() {
        for (;;) {
            int current = get();
            int next = current + 1;
            if (compareAndSet(current, next))
                return next;
        }
    }

    public final int decrementAndGet() {
        for (;;) {
            int current = get();
            int next = current - 1;
            if (compareAndSet(current, next))
                return next;
        }
    }

    public final int addAndGet(int delta) {
        for (;;) {
            int current = get();
            int next = current + delta;
            if (compareAndSet(current, next))
                return next;
        }
    }

    public String toString() {
        return Integer.toString(get());
    }


    public int intValue() {
    return get();
    }

    public long longValue() {
    return (long)get();
    }

    public float floatValue() {
    return (float)get();
    }

    public double doubleValue() {
    return (double)get();
    }

}

你可能感兴趣的:(java并发系列)