使用Python+Tensorflow的CNN技术快速识别验证码

北京 上海巡回站 | NVIDIA DLI深度学习培训2018年1月26/1月12日 使用Python+Tensorflow的CNN技术快速识别验证码_第1张图片NVIDIA 深度学习学院 带你快速进入火热的DL领域
阅读全文                                                  >



正文共2929个字,17张图,预计阅读时间:8分钟。


近年来,机器学习变得愈加火热,中国选手柯洁与AlphaGo的人机大战更是引起热议。目前,在图像识别和视觉分析研究中,卷积神经网络(CNN)技术的使用越来越多。Tensorflow 是由 Google 团队开发的神经网络模块,短短几年间, 就已经有很多次版本的更新。最近我也在自学Tensorflow,想通过卷积神经网络快速识别整块验证码(不分割字符)。期间也碰到许多问题,诸如软件安装,Tensorflow版本差异等。一开始学习tensorflow是盲目的,不知如何下手,网上的资料都比较单一,为了回报社会,让大家少走弯路,我将详细介绍整个过程。本教程所需要的完整材料,我都会放在这里。限于个人水平,如有错误请指出!


接下来我将介绍如何使用Python+Tensorflow的CNN技术快速识别验证码。在此之前,介绍我们用到的工具:


1. PyCharm社区版(python的IDE):写代码非常方便,安装第三方库(tensorflow 1.2.1)操作简单。


2. Python3:当我还在犹豫py2还是py3的时候,tensorflow已能支持windows、py3了,并且python3代表未来,建议使用Python3。


3. Photoshop:用于验证码的分析和处理(在这里不需要你精通)。


本文将从以下几个方面来介绍:


验证码分析和处理—— tensorflow安装 —— 模型训练 —— 模型预测


01

验证码分析和处理


网上搜索验证码识别能够得到很多教程,但大部分都是将验证码切割成单个字符训练,有时候 验证码字符大小不一或者发生重叠,切割验证码变得不适用。因此通过CNN技术将整块验证码进行识别,能使问题变得更加简单(以下操作对其他验证码分析有参考作用)。


在这里我们选择模拟学习这样的验证码:


该验证码来源于这里(正如sci-hub网站所言"to remove all barriers in the way of science",知识就该如此)。


使用Python+Tensorflow的CNN技术快速识别验证码_第2张图片

原始的验证码


该验证码只由六位小写字母、噪点和干扰线组成,如果能去除噪点和干扰线,能够大大降低学习的难度。很多验证码的噪点和干扰线RGB值和字母的不一致,这个我们能通过Photoshop来分析,使用颜色取样器工具,分别在图片噪点、干扰线、空白处和字母处点击获得RGB值,如下图:


使用Python+Tensorflow的CNN技术快速识别验证码_第3张图片

颜色取样器获得RGB值


分析后发现,只要将图片二值化只保留字母,就能得到不错的输入图片:

使用Python+Tensorflow的CNN技术快速识别验证码_第4张图片

处理后的图片


实现代码如下:


使用Python+Tensorflow的CNN技术快速识别验证码_第5张图片

验证码处理代码


以上就是验证码处理方法,为了下面的分析方便,我将处理好的验证码打包放到这里。


02

tensorflow安装


如果你查看了官方文档会发现提供了很多安装方式,但是还是比较复杂。针对不同的系统,不同设备(CPU or GPU)都不一样,我在这里选择用pycharm直接安装tensorflow非常好用,而且跟python版本兼容,不用考虑过多。打开pycharm,在菜单栏里flie-settings-project-project interpreter,选择python3 interpreter,


使用Python+Tensorflow的CNN技术快速识别验证码_第6张图片

添加第三方库


然后点击+按钮,输入tensorflow,install package。


使用Python+Tensorflow的CNN技术快速识别验证码_第7张图片

添加tensorflow库


至此,tensorflow就在电脑上安装好了,非常简单吧,我安装的时候版本是1.2.1。准备工作全部结束。


03

模型训练


如果你对卷积神经网络或者Python代码实现还不熟悉,我推荐你先看看《tensorflow实战》黄 文坚著这本书,比官方文档详细多。搞清楚代码如何实现后,再来看接下来的内容(毕竟我也是花了时间走弯路的)。


首先,我们先输入验证码的信息备用,图片是114*450像素,最大有6个字母,每个字母通过26个0或1表示,比如a表示成10000000000000000000000000,b表示成01000000000000000000000000,以此类推。


?wx_fmt=png

验证码信息


接下来定义一个函数,随机从训练集(3430张)中提取验证码图片,由于验证码经过我手动打标签(码了6小时),在这里只要获取验证码的名字和图片就够了,我默认放在"F:/captcha4/"目录下,需要注意的是返回的图片是以矩阵的形式。


使用Python+Tensorflow的CNN技术快速识别验证码_第8张图片

获取验证码名字和图片


接下来定义两个函数,将名字转变成向量,将向量转变成名字。


使用Python+Tensorflow的CNN技术快速识别验证码_第9张图片

名字向量互转


生成一个训练batch,也就是采样的大小,默认一次采集64张验证码作为一次训练,需要注意通过get_name_and_image()函数获得的image是一个含布尔值的矩阵,在这里通过1*(image.flatten())函数转变成只含0和1的1行114*450列的矩阵。


使用Python+Tensorflow的CNN技术快速识别验证码_第10张图片

采样batch


接下来定义卷积神经网络结构,我们采用3个卷积层加1个全连接层的结构,在每个卷积层中都选用2*2的最大池化层和dropout层,卷积核尺寸选择5*5。需要注意的是在全连接层中,我们的图片114*450已经经过了3层池化层,也就是长宽都压缩了8倍,得到15*57大小。


使用Python+Tensorflow的CNN技术快速识别验证码_第11张图片

卷积神经网络结构


结构建立好后就可以开始训练了,在这里选择的sigmoid_cross_entropy_with_logits()交叉熵来比较loss,用adam优化器来优化。输出每一步的loss值,每100步,输出一次准确率。在这里我调节当准确率达到99%后,结束训练。需要注意的是,keep_prob = 0.5,这个参数控制着过拟合,当我们机器学习速度过快的时候,可以减小该值,让机器遗忘的多一点(像人一样,记得多不一定好,哈哈)。


使用Python+Tensorflow的CNN技术快速识别验证码_第12张图片

训练模型


训练完成后,你应该会得到如下几个文件。在这里我花了将近9个小时跑了1800步,达到99.5%的准确率。输出文件的详细介绍参考这里。


?wx_fmt=png

模型输出文件


04

模型预测


我们的模型训练成功后,我们就要检验一下该模型的预测水平,在这里我们首先要把train_crack_captcha_cnn()函数注释掉,然后再定义一个预测模型的函数crack_captcha(),需要注意为了从预测集中抽数据,这里的get_name_and_image()函数调用"F:/captcha5/"目录下的10张预测图片。


使用Python+Tensorflow的CNN技术快速识别验证码_第13张图片

更改到预测集文件夹


使用Python+Tensorflow的CNN技术快速识别验证码_第14张图片

从预测集中随机预测10次


预测结果如下:


使用Python+Tensorflow的CNN技术快速识别验证码_第15张图片

预测结果对比


经过比较,我发现10张预测的能有4张准确,这还有待改进,但是整体上还是达到了我的要求。毕竟训练集的准确率有99.5%。如果我调低keep_prob的值,增加样本量,增加卷积层,最后的预测效果应该会更好。


总之,通过上面这个教程,只是教大家如何通过tensorflow的CNN技术处理整块验证码,大家可以尝试着用其他验证码试试,但是样本量越多越好。


05

总结


首先本文教大家如何简单处理验证码,然后介绍了tensorflow的快速安装方式,最后通过实现了CNN下整块验证码的识别,训练集准确率达到99.5%,测试集准确率在40%左右。如果调低keep_prob的值,增加样本量,增加卷积层,最后的预测效果应该会更好。


希望大家以后在tensorflow的学习道路中少点阻碍!!!


原文链接:https://www.jianshu.com/p/26ff7b9075a1


查阅更为简洁方便的分类文章以及最新的课程、产品信息,请移步至全新呈现的“LeadAI学院官网”:

www.leadai.org


请关注人工智能LeadAI公众号,查看更多专业文章

使用Python+Tensorflow的CNN技术快速识别验证码_第16张图片

大家都在看

640.png?

LSTM模型在问答系统中的应用

基于TensorFlow的神经网络解决用户流失概览问题

最全常见算法工程师面试题目整理(一)

最全常见算法工程师面试题目整理(二)

TensorFlow从1到2 | 第三章 深度学习革命的开端:卷积神经网络

装饰器 | Python高级编程

今天不如来复习下Python基础


640.png?

你可能感兴趣的:(使用Python+Tensorflow的CNN技术快速识别验证码)