本教程基于CDH5.8.0其它组件版本为:spark2.1.0、kafka0.10.2、HDFS2.6.0
<dependency>
<groupId>org.apache.sparkgroupId>
<artifactId>spark-streaming_2.11artifactId>
<version>2.1.0version>
<scope>compilescope>
dependency>
<dependency>
<groupId>org.apache.sparkgroupId>
<artifactId>spark-streaming-kafka-0-10_2.11artifactId>
<version>2.1.0version>
<scope>compilescope>
dependency>
<dependency>
<groupId>org.apache.hbasegroupId>
<artifactId>hbase-clientartifactId>
<version>1.2.0version>
<scope>compilescope>
dependency>
package utils
import java.security.PrivilegedAction
import org.apache.hadoop.hbase.HBaseConfiguration
import org.apache.hadoop.hbase.client.{Connection, ConnectionFactory}
import org.apache.hadoop.security.UserGroupInformation
/**
* Created by LHX on 2018/7/12 15:13.
* 访问Kerberos环境下的HBase
*/
object HBaseUtil extends Serializable{
/**
* HBase 配置文件路径
* @return
*/
def getHBaseConn(): Connection = {
System.setProperty("java.security.krb5.conf","krb5.conf")
var table_name ="DAC_test01"
val conf = HBaseConfiguration.create()
val user = "asmp"
val keyPath = "asmp.keytab"
//Kerberos验证
conf.set("hbase.zookeeper.quorum","www.test.com")
conf.set("hbase.zookeeper.property.clientPort", "2181")
conf.set("hbase.rootdir", "hdfs://www.test.com:8020/hbase")
conf.set("hadoop.security.authentication","Kerberos")
conf.set("hbase.security.authentication","Kerberos")
conf.set("hbase.zookeeper.client.keytab.file", keyPath)
conf.set("hbase.master.kerberos.principal", "hbase/_HOST")
conf.set("hbase.master.keytab.file", keyPath)
conf.set("hbase.regionserver.kerberos.principal", "hbase")
conf.set("hbase.regionserver.keytab.file", keyPath)
UserGroupInformation.setConfiguration(conf)
UserGroupInformation.loginUserFromKeytab(user, keyPath)
val loginUser = UserGroupInformation.getLoginUser
loginUser.doAs(new PrivilegedAction[Connection] {
override def run(): Connection = ConnectionFactory.createConnection(conf)
})
}
}
package com.egridcloud.kafka
import org.apache.commons.lang.StringUtils
import org.apache.hadoop.hbase.{HBaseConfiguration, TableName}
import org.apache.hadoop.hbase.client.{Connection, ConnectionFactory, Put}
import org.apache.hadoop.hbase.util.Bytes
import org.apache.hadoop.security.UserGroupInformation
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SparkSession
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import utils.HBaseUtil
import scala.util.Try
import scala.util.parsing.json.JSON
/**
* Created by LHX on 2018/7/12 15:07.
* describe: Kerberos环境中Spark2Streaming应用实时读取Kafka数据,解析后存入HBase
* 使用spark2-submit的方式提交作业
*/
object Kafka2Spark2HbaseTest {
def main(args: Array[String]): Unit = {
System.setProperty("java.security.krb5.conf","krb5.conf")
var table_name ="DAC_test01"
val conf = HBaseConfiguration.create()
val user = "asmp"
val keyPath = "asmp.keytab"
//Kerberos验证
conf.set("hbase.zookeeper.quorum","www.test.com")
conf.set("hbase.zookeeper.property.clientPort", "2181")
conf.set("hbase.rootdir", "hdfs://www.test.com:8020/hbase")
conf.set("hadoop.security.authentication","Kerberos")
conf.set("hbase.security.authentication","Kerberos")
conf.set("hbase.zookeeper.client.keytab.file", keyPath)
conf.set("hbase.master.kerberos.principal", "hbase/_HOST")
conf.set("hbase.master.keytab.file", keyPath)
conf.set("hbase.regionserver.kerberos.principal", "hbase/_HOST")
conf.set("hbase.regionserver.keytab.file", keyPath)
UserGroupInformation.setConfiguration(conf)
UserGroupInformation.loginUserFromKeytab(user, keyPath)
//加载配置文件
val brokers = "10.122.17.129:9095,10.122.17.130:9095,10.122.17.131:9095"
val topics = "stream_test01"
println("kafka.brokers:" + brokers)
println("kafka.topics:" + topics)
if(StringUtils.isEmpty(brokers)|| StringUtils.isEmpty(topics) ) {
println("未配置Kafka和Kerberos信息")
System.exit(0)
}
val topicsSet = topics.split(",").toSet
val sparkConf = new SparkConf().setAppName("Kafka2Spark2HBase").setMaster("local[2]")
val sc =new SparkContext(sparkConf)
// 批次间隔5秒
val ssc = new StreamingContext(sc, Seconds(5))
// val ssc = new StreamingContext(spark.sparkContext, Seconds(5)) //设置Spark时间窗口,每5s处理一次
val kafkaParams = Map[String, Object]("bootstrap.servers" -> brokers
, "auto.offset.reset" -> "latest"
, "sasl.kerberos.service.name" -> "kafka"
, "key.deserializer" -> classOf[StringDeserializer]
, "value.deserializer" -> classOf[StringDeserializer]
, "group.id" -> "testgroup"
)
val dStream = KafkaUtils.createDirectStream[String, String](ssc,
LocationStrategies.PreferConsistent,
ConsumerStrategies.Subscribe[String, String](topicsSet, kafkaParams))
dStream.foreachRDD(rdd => {
rdd.foreachPartition(partitionRecords => {
val connection = HBaseUtil.getHBaseConn() // 获取Hbase连接
partitionRecords.foreach(line => {
//将Kafka的每一条消息解析为JSON格式数据
val jsonObj = JSON.parseFull(line.value())
println(line.value())
val map:Map[String,Any] = jsonObj.get.asInstanceOf[Map[String, Any]]
val rowkey = map.get("id").get.asInstanceOf[String]
val name = map.get("name").get.asInstanceOf[String]
val sex = map.get("sex").get.asInstanceOf[String]
val city = map.get("city").get.asInstanceOf[String]
val occupation = map.get("occupation").get.asInstanceOf[String]
val mobile_phone_num = map.get("mobile_phone_num").get.asInstanceOf[String]
val fix_phone_num = map.get("fix_phone_num").get.asInstanceOf[String]
val bank_name = map.get("bank_name").get.asInstanceOf[String]
val address = map.get("address").get.asInstanceOf[String]
val marriage = map.get("marriage").get.asInstanceOf[String]
val child_num = map.get("child_num").get.asInstanceOf[String]
val tableName = TableName.valueOf("ASMP:DAC_test01")
val table = connection.getTable(tableName)
val put = new Put(Bytes.toBytes(rowkey))
put.addColumn(Bytes.toBytes("f1"), Bytes.toBytes("name"), Bytes.toBytes(name))
put.addColumn(Bytes.toBytes("f1"), Bytes.toBytes("sex"), Bytes.toBytes(sex))
put.addColumn(Bytes.toBytes("f1"), Bytes.toBytes("city"), Bytes.toBytes(city))
put.addColumn(Bytes.toBytes("f1"), Bytes.toBytes("occupation"), Bytes.toBytes(occupation))
put.addColumn(Bytes.toBytes("f1"), Bytes.toBytes("mobile_phone_num"), Bytes.toBytes(mobile_phone_num))
put.addColumn(Bytes.toBytes("f1"), Bytes.toBytes("fix_phone_num"), Bytes.toBytes(fix_phone_num))
put.addColumn(Bytes.toBytes("f1"), Bytes.toBytes("bank_name"), Bytes.toBytes(bank_name))
put.addColumn(Bytes.toBytes("f1"), Bytes.toBytes("address"), Bytes.toBytes(address))
put.addColumn(Bytes.toBytes("f1"), Bytes.toBytes("marriage"), Bytes.toBytes(marriage))
put.addColumn(Bytes.toBytes("f1"), Bytes.toBytes("child_num"), Bytes.toBytes(child_num))
Try(table.put(put)).getOrElse(table.close())//将数据写入HBase,若出错关闭table
table.close()//分区数据写入HBase后关闭连接
})
connection.close()
})
})
ssc.start()
ssc.awaitTermination()
}
}
package com.##.kafka
import java.util.Properties
import org.apache.kafka.clients.producer.{KafkaProducer, ProducerRecord}
import org.apache.kafka.common.serialization.StringSerializer
import scala.util.parsing.json._
/**
* Created by LHX on 2018/7/10 上午 11:00.
* 测试集群kafka发送Json数据
*/
class TestProducer(val topic: String) extends Thread {
var producer: KafkaProducer[String, String] = _
def init: TestProducer = {
val props = new Properties()
props.put("bootstrap.servers", "10.122.17.129:9095,10.122.17.130:9095,10.122.17.131:9095")
props.put("key.serializer", classOf[StringSerializer].getName)
props.put("value.serializer", classOf[StringSerializer].getName)
this.producer = new KafkaProducer[String, String](props)
this
}
override def run(): Unit = {
var num = 1
while (true) {
val colors:Map[String,Object] = Map("id" -> s"65005${num}", "name" -> s"仲淑${num}", "sex" -> "1",
"city" -> "长治", "occupation" -> "生产工作", "mobile_phone_num" -> "13607268580", "fix_phone_num" -> "15004170180",
"bank_name" -> "广州银行", "address" -> "台东二路16号", "marriage" -> "1", "child_num" -> "1")
val json = JSONObject(colors)
//要发送的消息
val messageStr = new String(json.toString())
println(s"send:${messageStr}")
producer.send(new ProducerRecord[String, String](this.topic, messageStr))
num += 1
if (num > 10) num = 0
Thread.sleep(3000)
}
}
}
// 伴生对象
object TestProducer
def apply(topic: String): TestProducer = new TestProducer(topic).init
}
object SparkWrite2Kafka {
def main(args: Array[String]): Unit = {
val producer = TestProducer("stream_test01")
producer.start()
}
}
注意事项:
先执行Kafka2Spark2HbaseTest.scala接收kafka数据,
再执行SparkWrite2Kafka.scala写入数据到kafka