HashMap是通过key-value键值对的方式来存储数据的,通过put、get方法实现键值对的快速存取,这是HashMap最基本的用法。HashMap实现了Map接口,允许放入null元素,除该类未实现同步外,其余跟Hashtable大致相同,跟TreeMap不同,该容器不保证元素顺序,根据需要该容器可能会对元素重新哈希,元素的顺序也会被重新打散,因此不同时间迭代同一个HashMap的顺序可能会不同。
有两个参数可以影响HashMap的性能:初始容量(inital capacity)和负载系数(load factor)。初始容量指定了初始table的大小,负载系数用来指定自动扩容的临界值。当entry的数量超过capacity*load_factor时,容器将自动扩容并重新哈希。对于插入元素较多的场景,将初始容量设大可以减少重新哈希的次数。
/**
* The load factor used when none specified in constructor.
*/
static final float DEFAULT_LOAD_FACTOR = 0.75f;
/**
* The default initial capacity - MUST be a power of two.
*/
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
static class Node implements Map.Entry {
//哈希值
final int hash;
final K key;
V value;
//指向下一个节点
Node next;
Node(int hash, K key, V value, Node next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + "=" + value; }
//重写hashCode方法,返回key的hashCode值与value的hashCode值异或运算所得的值
public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
//重写equals方法,判断两个Node是否相等,如果两个Node对象的key和value相等,则返回true,否则返回false
public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry,?> e = (Map.Entry,?>)o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,boolean evict) {
Node[] tab; Node p; int n, i;
//初始化操作
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//如果tab[i]为空则将Node放入tab[i]
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node e; K k;
//如果新加入元素与tab[i]的元素key相同,则做替换操作
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
//该节点为TreeNode的情况
else if (p instanceof TreeNode)
e = ((TreeNode)p).putTreeVal(this, tab, hash, key, value);
else {
//遍历tab[i]的链表
for (int binCount = 0; ; ++binCount) {
//如果该链表没有元素的key与新加元素冲突则将新的Node对象加到链表末尾
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
//如果新加入元素与该Node的key相同,则做替换操作
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
//真正执行替换操作
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
//操作次数加1
++modCount;
//如果将要超出容量则重新调整大小
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
public V get(Object key) {
Node e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node getNode(int hash, Object key) {
Node[] tab; Node first, e; int n; K k;
//当前table不为空,根据hash值查找相应数组位置
if ((tab = table) != null && (n = tab.length) > 0 &&(first = tab[(n - 1) & hash]) != null) {
//优先检查第一个node
if (first.hash == hash &&
((k = first.key) == key || (key != null && key.equals(k))))
return first;
//向后查找
if ((e = first.next) != null) {
if (first instanceof TreeNode)
return ((TreeNode)first).getTreeNode(hash, key);
do {
//如果Node对象的hash值跟上面计算得到的hash值相等,并且key也相等,那么就返回此Node对象
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
//当前table为空,直接返回null
return null;
}
public boolean remove(Object key, Object value) {
return removeNode(hash(key), key, value, true, true) != null;
}
final Node removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
Node[] tab; Node p; int n, index;
//根据hash值和数组长度计算数组下标值i,而且该位置不为空
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) {
Node node = null, e; K k; V v;
//如果此单链表上Node p的hash值与计算出的hash值相等并且其key也跟传入的key相等,则从单链表上移除p
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
node = p;
//遍历链表后续位置
else if ((e = p.next) != null) {
if (p instanceof TreeNode)
node = ((TreeNode)p).getTreeNode(hash, key);
else {
do {
//如果此单链表上Node e的hash值与计算出的hash值相等并且其key也跟传入的key相等,则从单链表上移除e
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
//真正移除节点的操作
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
if (node instanceof TreeNode)
((TreeNode)node).removeTreeNode(this, tab, movable);
else if (node == p)
tab[index] = node.next;
else
p.next = node.next;
//操作次数+1
++modCount;
//容量-1
--size;
afterNodeRemoval(node);
return node;
}
}
return null;
}
从以上源码的分析中我们知道了HashMap底层维护的是数组加链表的混合结构,其本质是对数组和链表的操作。要注意的是HashMap不是线程安全的,我们可以使用Collections.synchoronizedMap方法来获得线程安全的HashMap。例如:
Map map = Collections.sychronizedMap(new HashMap());
以上是我个人对HashMap底层原理的一点理解,不妥的地方欢迎指正!