fer2013图片库。
模型训练结束,保存,下次可接着继续训练。
注意windows的路径输入,最后的“\"不知怎么处理好,只好用LOGS_PATH=os.path.normcase('c:/temp/log_mnist_softmax/')
将正斜杠改成反斜杠。
tensorflow的tensorboard真的很酷,有时间再研究。
# coding=utf-8
#import string, os, sys
import numpy as np
#import matplotlib.pyplot as plt
#import scipy.io
#import random
import tensorflow as tf
import pandas as pd
#import cv2
from datetime import datetime
import os
###:csv文件数据处理:
file_path = r'C:\temp\fer2013\fer2013.csv'
f_train = open(file_path, encoding = 'UTF-8')
data = pd.read_csv(f_train, dtype='a')
labels = np.array(data['emotion'],np.int)
imagebuffer = np.array(data['pixels'])
#删掉空格,每个图片转化为数组:
images = np.array([np.fromstring(image,np.uint8,sep=' ') for image in imagebuffer])
#s释放临时buff:
del imagebuffer
#最后一个维度的大小:
num_shape = int(np.sqrt(images.shape[-1]))
#调整数组为48*48图片:
num_samples = images.shape[0]
images.shape = (-1,num_shape,num_shape)
Face_data = np.zeros((num_samples, num_shape,num_shape))
Face_label = np.zeros((num_samples, 7), dtype=int)
#数据归一化:
for i in range(num_samples):
x = images[i].astype(np.float)
x_max = x.max()
x = x/(x_max+0.0001)
Face_data[i] = x
Face_label[i, labels[i]] = 1
#plt.subplot(5,5,i+1)
#plt.axis('off')
#plt.imshow(x,cmap='Greys_r')
#plt.show()
TRAIN_NUM = 1000
TEST_NUM = 100
train_x = Face_data [0:TRAIN_NUM, :]
train_y = Face_label [0:TRAIN_NUM, :]
test_x =Face_data [TRAIN_NUM : TRAIN_NUM+TEST_NUM, :]
test_y = Face_label [TRAIN_NUM : TRAIN_NUM+TEST_NUM, :]
BATCH_SIZE = 100
LEARNING_RATE = 0.001
MAX_ITERATIONS = 101
REGULARIZATION=1e-2
IMAGE_SIZE=48
NUM_LABELS=7
PROB_DROPOUT = 0.5 # Dropout, probability to keep units
LOGS_PATH=os.path.normcase('c:/temp/log_mnist_softmax/')
## Create some wrappers for simplicity:
#自定义集合losses,list tensor(以后tf.add_n()进行累加):
def add_to_regularization_loss(w,b):
tf.add_to_collection('losses', tf.nn.l2_loss(w))
tf.add_to_collection('losses', tf.nn.l2_loss(b))
# Conv2D wrapper, with bias and relu activation:
def weight_variable(shape,stddev=0.02,name=None):
initial=tf.truncated_normal(shape,stddev=stddev)
if name is None:
return tf.Variable(initial)
else:
return tf.get_variable(name,initializer=initial)
def bias_variable(shape,name=None):
initial=tf.constant(0.0,shape=shape)#
if name is None:
return tf.Variable(initial)
else:
return tf.get_variable(name,initializer=initial)
def conv2d(x, W, b,strides=1):
cov = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')
return tf.nn.relu(tf.nn.bias_add(cov, b))
# MaxPool2D wrapper:
def maxpool2d(x, k=2):
return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],padding='VALID')
# Create model:
def cnn_model(x, weights, biases, prob_dropout):
x = tf.reshape(x, shape=[-1, 48, 48, 1])#
with tf.name_scope('conv1'):
tf.summary.histogram('w_conv1',weights['wc1'])
tf.summary.histogram('b_conv1',biases['bc1'])
y_conv1=conv2d(x, weights['wc1'], biases['bc1'])
p_conv1=maxpool2d(y_conv1)
add_to_regularization_loss(weights['wc1'], biases['bc1'])
with tf.name_scope('conv2'):
tf.summary.histogram('w_conv2',weights['wc2'])
tf.summary.histogram('b_conv2',biases['bc2'])
y_conv2=conv2d(p_conv1, weights['wc2'], biases['bc2'])
p_conv2=maxpool2d(y_conv2)
add_to_regularization_loss(weights['wc2'], biases['bc2'])
# Fully connected layer:
# Reshape conv2 output to fit fully connected layer input:
with tf.name_scope('fuc1'):
tf.summary.histogram('w_fuc1',weights['wf1'])
tf.summary.histogram('b_fuc1',biases['bf1'])
fuc1_1 = tf.reshape(p_conv2, [-1, weights['wf1'].get_shape().as_list()[0]])
z_fuc1 = tf.add(tf.matmul(fuc1_1, weights['wf1']), biases['bf1'])
y_fuc1 = tf.nn.relu(z_fuc1)
# Apply Dropout:
d_fuc1 = tf.nn.dropout(y_fuc1, prob_dropout)
# Output, class prediction
with tf.name_scope('fuo'):
tf.summary.histogram('w_fuo',weights['wfo'])
tf.summary.histogram('b_fuo',biases['bfo'])
return tf.add(tf.matmul(d_fuc1, weights['wfo']), biases['bfo'])
# Store layers weight & bias:
weights = {
# 5x5 conv, 1 input, 32 outputs:
'wc1': weight_variable([5, 5, 1, 32],name='w_conv1'),
# 3x3 conv, 32 inputs, 64 outputs:
'wc2': weight_variable([3, 3, 32, 64],name='w_conv2'),
# fully connected:
'wf1': weight_variable([int(IMAGE_SIZE/4)*int(IMAGE_SIZE/4)*64, 256],name='w_fuc1'),
# 256 inputs, 7 outputs (class prediction):
'wfo': weight_variable([256, NUM_LABELS],name='w_fuo')
}
biases = {
'bc1': bias_variable([32],name='b_conv1'),
'bc2': bias_variable([64],name='b_conv2'),
'bf1': bias_variable([256],name='b_fuc1'),
'bfo': bias_variable([NUM_LABELS],name='b_fuo')
}
# Define loss, entropy+reg_losses:
def loss(z_output,y_desired):
loss_cross_entropy=\
tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=z_output, labels=y_desired))
tf.summary.scalar('Loss_entropy',loss_cross_entropy)
reg_losses=tf.add_n(tf.get_collection('losses'))
tf.summary.scalar('Reg_losses',reg_losses)
return loss_cross_entropy+REGULARIZATION*reg_losses
#Define optimizer:
def train(loss,step):
return tf.train.AdamOptimizer(LEARNING_RATE).minimize(loss,global_step=step)
def get_next_batch(images,labels,step):
offset=(step*BATCH_SIZE)%(images.shape[0])#??-BATCH_SIZE)
batch_images=images[offset:offset+BATCH_SIZE]
batch_labels=labels[offset:offset+BATCH_SIZE]
return batch_images,batch_labels
#####main:
# tf Graph input:
x_input = tf.placeholder(tf.float32, [None, IMAGE_SIZE,IMAGE_SIZE],name='x_input')
y_desired = tf.placeholder(tf.float32, [None, NUM_LABELS],name='y_desired')
prob_dropout=tf.placeholder(tf.float32)
global_step=tf.Variable(0,trainable=False)
# Construct model:
z_output = cnn_model(x_input, weights, biases, prob_dropout)
y_output=tf.nn.softmax(z_output,name='y_output')#prob of being x class
loss_val=loss(z_output,y_desired)
train_op=train(loss_val,global_step)
summary_op=tf.summary.merge_all()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
summary_writer=tf.summary.FileWriter(LOGS_PATH,graph=tf.get_default_graph())#
saver=tf.train.Saver()
ckpt=tf.train.get_checkpoint_state(LOGS_PATH)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess,ckpt.model_checkpoint_path)
print('Model Restored!')
for step in range(MAX_ITERATIONS):
batch_image,batch_label=get_next_batch(train_x, train_y, step)
feed_dict_train={x_input:batch_image,y_desired:batch_label,prob_dropout:PROB_DROPOUT}
feed_dict_test={x_input:test_x,y_desired:test_y,prob_dropout:1.0}
sess.run(train_op,feed_dict=feed_dict_train)
if step % 10==0:
train_loss,summary_str=sess.run([loss_val,summary_op],feed_dict=feed_dict_train)
summary_writer.add_summary(summary_str, global_step=step)
print('Training Loss: %f'%train_loss)
if step % 20 ==0:
test_loss=sess.run(loss_val,feed_dict=feed_dict_test)
print('%s Test Loss:%f'%(datetime.now(),test_loss))
saver.save(sess,LOGS_PATH+'model.ckpt',global_step=step)
#new_saver.restore(sess, r'c:/temp/saved_mnist_cnn/saved_mnist_cnn.ckp')
#save_path=saver.save(sess,'c:/temp/saved_mnist_cnn')