- Ubuntu LLaMA-Factory实战
张3蜂
llama
一、UbuntuLLaMA-Factory实战安装:CUDA安装CUDA是由NVIDIA创建的一个并行计算平台和编程模型,它让开发者可以使用NVIDIA的GPU进行高性能的并行计算。首先,在https://developer.nvidia.com/cuda-gpus查看您的GPU是否支持CUDA保证当前Linux版本支持CUDA.在命令行中输入uname-m&&cat/etc/*release,应
- JavaScript中的Web Workers
前端岳大宝
前端核心知识总结前端javascript
以下是关于WebWorkers的全面梳理,涵盖核心概念、使用场景、进阶技巧及注意事项,帮助我们充分利用多线程能力优化前端性能:一、WebWorkers基础概念1.定义与作用定义:WebWorkers是浏览器提供的API,允许在独立后台线程中运行JavaScript脚本,避免主线程阻塞。核心价值:并行计算:处理CPU密集型任务(如数据加密、图像处理)。保持UI响应:将耗时任务移至Worker,防止页
- Unity光线追踪移动端降级适配技术指南
Clank的游戏栈
unity游戏引擎
一、移动端光追的技术挑战与适配思路1.硬件限制与性能瓶颈算力限制:移动端GPU的并行计算能力仅为桌面端的1/10-1/2010带宽压力:光线追踪需要频繁访问几何数据,移动端显存带宽不足发热控制:连续高负载运算易触发设备温控降频2.降级适配核心策略优化维度高配方案低配方案光线数量每像素4-8条每像素1-2条反射/折射深度3-4次反弹1次反弹采样精度时间抗锯齿(TAA)双线性插值数据结构BVH动态构建
- python train 函数_Python之并行--基于joblib
weixin_39786850
pythontrain函数
Python的并行远不如Matlab好用。比如Matlab里面并行就直接把for改成parfor就行(当然还要注意迭代时下标的格式),而Python查一查并行,各种乱七八糟的方法一大堆,而且最不爽的一点就是只能对函数进行并行。当然,这点困难也肯定不能就难倒我们,该克服也得克服,毕竟从本质上讲,也就只是实现的方式换一换而已。大名鼎鼎的sklearn里面集成了很方便的并行计算,这在之前的机器学习教程里
- python joblib_joblib 使用 Python 方便的进行并行计算
weixin_39788131
pythonjoblib
Thehomepageofjoblibwithuserdocumentationislocatedon:GettingthelatestcodeTogetthelatestcodeusinggit,simplytype:gitclonegit://github.com/joblib/joblib.gitIfyoudon'thavegitinstalled,youcandownloadaziport
- Python Joblib 使用详解:缓存与并行加速技术
egzosn
python缓存开发语言
Joblib简介Joblib是一个轻量级的Python工具集,主要用于两个方面:结果缓存(Memoization)利用Memory类,可以将函数的输出结果存储到磁盘上,避免多次重复计算。特别适合于数据处理和机器学习中一些耗时计算的场景。并行计算利用Parallel和delayed,可以方便地将循环中的任务分发到多个CPU核心上运行,从而加速计算过程。这些功能使得Joblib成为数据科学、机器学习和
- Python(4)Python函数编程性能优化全指南:从基础语法到并发调优
一个天蝎座 白勺 程序猿
python性能优化开发语言
目录一、Lambda性能优化原理1.1内联执行优势1.2并行计算加速二、工程级优化策略2.1内存管理机制2.2类型提示增强三、生产环境最佳实践3.1代码可读性平衡3.2异常处理模式四、性能调优案例4.1排序算法优化4.2数据管道加速五、未来演进方向5.1JIT编译优化5.2类型系统增强六、优化总结1.性能优势对比2.工程级优化策略3.生产环境实践一、Lambda性能优化原理1.1内联执行优势
- Python Joblib库使用学习总结
酒酿小小丸子
python学习开发语言
实践环境python3.6.2Joblib简介Joblib是一组在Python中提供轻量级流水线的工具。特别是:函数的透明磁盘缓存和延迟重新计算(记忆模式)简单易用的并行计算Joblib已被优化得很快速,很健壮了,特别是在大数据上,并对numpy数组进行了特定的优化。主要功能输出值的透明快速磁盘缓存(Transparentandfastdisk-cachingofoutputvalue):Pyth
- RTX4070Ti架构解析与效能实测
智能计算研究中心
其他
内容概要本文以NVIDIAGeForceRTX4070Ti显卡为核心研究对象,系统性地拆解其基于AdaLovelace架构的技术革新与性能表现。通过整合理论分析与实测数据,文章将从核心规格、显存配置、基准测试、游戏帧率及能效管理五大维度展开论证。具体而言,7680个CUDA核心的并行计算效率、12GBGDDR6X显存的带宽利用率,以及DLSS3与光线追踪技术的协同优化,将成为重点探讨方向。为直观呈
- CUDA 学习(4)——CUDA 编程模型
哦豁灬
CUDA学习笔记学习CUDAGPU
CPU和GPU由于结构的不同,具有不同的特点:CPU:擅长流程控制和逻辑处理,不规则数据结构,不可预测存储结构,单线程程序,分支密集型算法GPU:擅长数据并行计算,规则数据结构,可预测存储模式在现在的计算机体系架构中,要完成CUDA并行计算,单靠GPU一人之力是不能完成计算任务的,必须借助CPU来协同配合完成一次高性能的并行计算任务。一般而言,并行部分在GPU上运行,串行部分在CPU运行,这就是异
- GPU的架构&原理解析
大数据追光猿
大模型架构语言模型python人工智能docker
GPU(GraphicsProcessingUnit,图形处理单元)是一种专门设计用于并行计算的硬件设备,最初用于加速图形渲染任务,但随着技术的发展,GPU已经成为通用计算(GPGPU,General-PurposecomputingonGraphicsProcessingUnits)的重要工具。以下是GPU的架构和工作原理的详细解析:1.GPU的基本架构(1)核心组件GPU的架构由以下几个关键组
- matlab使用fmincon开加速
小蜗笔记
学习收藏matlab学习笔记求解函数最优值matlab开发语言
在使用fmincon进行优化时,可以通过以下方法加速优化过程。这些方法主要涉及算法选择、并行计算、减少函数调用次数等。以下是具体建议和实现方式:1.选择合适的优化算法fmincon支持多种优化算法,不同的算法适用于不同类型的优化问题。选择合适的算法可以显著提高优化效率。示例代码:options=optimoptions('fmincon',...'Algorithm','sqp',...%使用SQ
- 跨领域智能算法安全优化与治理研究
智能计算研究中心
其他
内容概要当前智能算法正加速渗透至金融、医疗、自动驾驶等关键领域,但跨场景应用中的安全性与治理效能仍面临多重挑战。本研究以自动化机器学习为核心优化路径,结合量子算法的并行计算优势与边缘计算的低延迟特性,构建多模态算法协同框架。通过表1所示的技术映射关系,系统梳理不同场景下的核心需求与风险控制节点:应用领域关键技术组合安全优化指标金融风控联邦学习+特征选择算法公平性验证(F1值/召回率)自动驾驶数据增
- 快速了解Transformer与循环神经网络(LSTM/RNN)的区别
Panesle
总结rnntransformerlstm人工智能深度学习
Transformer与循环神经网络(LSTM/RNN)的区别关键差异总结:并行性:Transformer的全局并行计算大幅提升训练效率,而RNN/LSTM受限于序列顺序。长序列处理:Transformer通过自注意力直接关联任意位置,避免梯度问题;RNN/LSTM在长序列中性能下降。灵活性:Transformer通过堆叠层和注意力头扩展模型容量,RNN/LSTM结构相对固定。硬件适配:Trans
- 深入理解计算机系统_第一章_计算机系统漫游
真的姜立明
计算机系统计算机系统存储层级结构程序性能cache
深入,并且广泛-沉默犀牛文章目录写在前面计算机系统漫游信息就是位+上下文程序被其他程序翻译成不同的格式了解编译系统如何工作是大有益处的处理器读出并解释存储在内存中的指令系统的硬件组成运行hello程序高速缓存至关重要存储设备形成层次结构操作系统管理硬件进程线程虚拟内存文件系统之间利用网络通信重要主题Amdahl定律并发和并行计算机系统中抽象的重要性小结写在前面今天是2018/12/14,还有一周我
- Python读取.nc文件的方法与技术详解
傻啦嘿哟
关于python那些事儿人工智能前端服务器
目录一、引言二、使用netCDF4库读取.nc文件安装netCDF4库导入netCDF4库打开.nc文件获取变量读取变量数据案例与代码三、使用xarray库读取.nc文件安装xarray库导入xarray库打开.nc文件访问变量数据案例与代码四、性能与优化分块读取使用Dask进行并行计算减少不必要的变量加载五、其他注意事项文件路径变量命名数据类型文件关闭六、总结一、引言.nc文件,即NetCDF(
- Q&A:备份产品的存储架构采用集中式和分布式的优劣?
云祺vinchin
技术分享架构分布式网络运维大数据
分布式和集中式各有优劣,且这两者下面的存储类型也都不尽相同,从备份与恢复的数据层面来看,这两者存储相结合才是优解。众所周知,备份数据只存一份还只放在一个存储里是不现实的。假设把备份数据访问频率、生命周期等参数分为三个等级(热、温、冷)。很显然,以分布式存储的优点用来存放热备份数据是非常合适的,能满足大规模数据在备份与恢复时的高吞吐需求,同时也能提供并行计算的能力,提供高效的目标端数据压缩和数据重删
- GPU计算的历史与CUDA编程入门
己见明
GPU计算CUDAC数据并行性CUDA程序结构向量加法内核
GPU计算的历史与CUDA编程入门背景简介GPU计算的历史可以追溯到早期的并行计算研究,如今已发展成为计算机科学中的一个重要分支。本文将探讨GPU计算的发展史,重点分析《ComputerGraphics:PrinciplesandPractice》等关键文献,以及CUDAC编程模型的引入及其对现代软件开发的影响。历史回顾回顾历史,GPU计算的发展始于1986年Hillis与Steele在《Comm
- 【赵渝强老师】达梦数据库MPP集群的架构
数据库信创
为了支持海量数据存储和处理等方面的需求,为高端数据仓库提供解决方案,达梦数据库提供了大规模并行处理MPP架构,以极低的成本代价,提供高性能的并行计算。通过使用MPP可以解决以下问题:需要较高的系统性能支持以支持大量的复杂查询操作硬件束缚对数据库响应能力的影响降低数据库成本视频讲解如下:https://www.bilibili.com/video/BV1dBftYoEkk/?aid=11386961
- CUDA编程基础
清 澜
算法面试人工智能c++算法nvidiacuda编程
一、快速理解CUDA编程1.1CUDA简介CUDA(ComputeUnifiedDeviceArchitecture)是由NVIDIA推出的并行计算平台和应用程序接口模型。它允许开发者利用NVIDIAGPU的强大计算能力来加速通用计算任务,而不仅仅是图形渲染。通过CUDA,开发者可以编写C、C++或Fortran代码,并将其扩展以在GPU上运行,从而显著提高性能,特别是在处理大规模数据集和复杂算法
- 纳米尺度仿真软件:Quantum Espresso_(21).并行计算与性能优化
kkchenjj
分子动力学2性能优化模拟仿真分子动力学仿真模拟
并行计算与性能优化在纳米尺度仿真中,计算资源的需求往往非常庞大。为了提高计算效率和缩短计算时间,并行计算和性能优化成为不可或缺的技术手段。QuantumEspresso作为一个开源的量子力学仿真软件,提供了多种并行计算的机制和性能优化的方法。本节将详细介绍如何在QuantumEspresso中实现并行计算和性能优化,以提升仿真任务的效率。并行计算的基本概念并行计算是指同时使用多个计算资源(如多核处
- 芯片:CPU和GPU有什么区别?
InnoLink_1024
AGI人工智能人工智能aiagigpu算力
CPU(中央处理器)和GPU(图形处理单元)是计算机系统中两种非常重要的处理器,它们各自有不同的设计理念、架构特点以及应用领域。下面是它们之间的一些主要差异:1.设计目的与应用领域CPU:设计目的是为了处理广泛的计算任务,包括操作系统管理、应用程序运行和基本的输入输出处理等。它处理的是复杂的、通用的计算任务,通常包括控制逻辑、内存管理等。GPU:设计目的是为了处理图形和并行计算任务。最初是为图形渲
- AI人工智能深度学习算法:在量子计算中的应用
AI天才研究院
AI大模型企业级应用开发实战AI大模型应用入门实战与进阶DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍随着科技的不断发展,人工智能和量子计算成为了当今世界的热门话题。人工智能的深度学习算法在处理大规模数据和复杂任务方面取得了显著的成果,而量子计算则具有强大的并行计算能力和高效的信息处理能力。将人工智能与量子计算相结合,为解决一些具有挑战性的问题提供了新的思路和方法。本文将探讨人工智能深度学习算法在量子计算中的应用,包括其背景、意义和应用场景。2.核心概念与联系在人工智能中,深度学习是一
- 基于MapReduce的气候数据分析
赵谨言
论文毕业设计经验分享
标题:基于MapReduce的气候数据分析内容:1.摘要本文聚焦于基于MapReduce的气候数据分析。背景在于随着全球气候变化问题日益严峻,海量气候数据的高效处理和分析成为关键。目的是利用MapReduce技术对气候数据进行有效挖掘,以揭示气候变化规律和趋势。方法上,采用MapReduce编程模型对大规模气候数据进行分布式处理,通过数据的映射和归约操作实现并行计算。结果表明,运用该技术能显著提高
- Matlab GPU加速技术
算法工程师y
matlab开发语言
1.GPU加速简介(1)为什么使用GPU加速?CPU擅长处理逻辑复杂的串行任务,而GPU拥有数千个流处理器,专为并行计算设计。对于大规模矩阵运算、深度学习训练或科学计算等任务,GPU加速可将计算速度提升数十至数百倍。(2)Matlab的GPU支持功能依赖:需安装ParallelComputingToolbox(并行计算工具箱)。硬件要求:支持CUDA的NVIDIAGPU(如Tesla、GeForc
- 从图形处理到通用计算的进化之路
绿算技术
GPU架构介绍科技gpu算力
图形处理单元,作为现代计算机中不可或缺的一部分,已经从最初的图形渲染专用处理器,发展成为强大的并行计算引擎,广泛应用于人工智能、科学计算、游戏娱乐等领域。本文将深入探讨GPU架构的演变历程、核心组件以及其在不同应用场景中的优势。GPU架构的演变:从固定功能到可编程流水线早期的GPU采用固定功能流水线架构,专为图形渲染任务而设计。这种架构将图形渲染流程划分为一系列固定的阶段,例如顶点处理、光栅化、纹
- GPU的优势:并行计算的利器
绿算技术
GPU架构介绍科技gpu算力
GPU相较于CPU,在并行计算方面具有以下优势:强大的并行计算能力:GPU拥有成千上万个计算核心,能够同时执行大量的线程,非常适合处理数据并行性高的任务。高内存带宽:GPU配备了高带宽的内存子系统,能够快速地将数据传输到计算核心,满足大规模数据处理的需求。高效的线程调度:GPU采用硬件多线程技术,能够快速地切换线程上下文,最大限度地提高计算资源的利用率。灵活的编程模型:GPU提供了丰富的编程模型和
- 在MATLAB中进行并行计算和GPU加速?
琛哥的程序
网络服务器人工智能
在MATLAB中进行并行计算和GPU加速是提升计算性能和处理大规模数据集的重要手段。下面将详细介绍如何在MATLAB中实现这些技术。一、并行计算MATLAB提供了并行计算的功能,可以充分利用多核处理器和分布式计算资源,显著提高代码执行效率。在MATLAB中进行并行计算的主要工具有ParallelComputingToolbox和parfor循环。ParallelComputingToolboxPa
- 深入理解 GPU 渲染加速与合成层(Composite Layers)
一、前端视角下的GPU加速1.CPU与GPU的协作模式在前端渲染流程中,GPU加速通过硬件并行计算能力显著提升图形处理效率。传统浏览器渲染依赖CPU处理DOM解析、样式计算和布局,但CPU的串行处理模式在处理大规模图形数据(如复杂动画、3D变换、高清图像)时易成为性能瓶颈。GPU的介入解决了这一核心矛盾:流处理器核心并行计算:GPU拥有数千个小型核心,可同时处理大量像素数据,例如同时对元素的所有像
- 信息技术基础专有名词和计算机硬件学习笔记
learning-striving
信息技术学习笔记信息技术计算机硬件
信息技术常见专有名词信息技术基础课程中常见的专有名词英文缩写或简称及其详细含义,按领域分类整理:硬件与存储CPU(CentralProcessingUnit)中央处理器,负责执行计算机指令和处理数据。GPU(GraphicsProcessingUnit)图形处理器,专用于处理图形和并行计算。RAM(RandomAccessMemory)随机存取存储器,临时存储运行中的程序和数据。ROM(Read-
- 桌面上有多个球在同时运动,怎么实现球之间不交叉,即碰撞?
换个号韩国红果果
html小球碰撞
稍微想了一下,然后解决了很多bug,最后终于把它实现了。其实原理很简单。在每改变一个小球的x y坐标后,遍历整个在dom树中的其他小球,看一下它们与当前小球的距离是否小于球半径的两倍?若小于说明下一次绘制该小球(设为a)前要把他的方向变为原来相反方向(与a要碰撞的小球设为b),即假如当前小球的距离小于球半径的两倍的话,马上改变当前小球方向。那么下一次绘制也是先绘制b,再绘制a,由于a的方向已经改变
- 《高性能HTML5》读后整理的Web性能优化内容
白糖_
html5
读后感
先说说《高性能HTML5》这本书的读后感吧,个人觉得这本书前两章跟书的标题完全搭不上关系,或者说只能算是讲解了“高性能”这三个字,HTML5完全不见踪影。个人觉得作者应该首先把HTML5的大菜拿出来讲一讲,再去分析性能优化的内容,这样才会有吸引力。因为只是在线试读,没有机会看后面的内容,所以不胡乱评价了。
- [JShop]Spring MVC的RequestContextHolder使用误区
dinguangx
jeeshop商城系统jshop电商系统
在spring mvc中,为了随时都能取到当前请求的request对象,可以通过RequestContextHolder的静态方法getRequestAttributes()获取Request相关的变量,如request, response等。 在jshop中,对RequestContextHolder的
- 算法之时间复杂度
周凡杨
java算法时间复杂度效率
在
计算机科学 中,
算法 的时间复杂度是一个
函数 ,它定量描述了该算法的运行时间。这是一个关于代表算法输入值的
字符串 的长度的函数。时间复杂度常用
大O符号 表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是
渐近 的,它考察当输入值大小趋近无穷时的情况。
这样用大写O()来体现算法时间复杂度的记法,
- Java事务处理
g21121
java
一、什么是Java事务 通常的观念认为,事务仅与数据库相关。 事务必须服从ISO/IEC所制定的ACID原则。ACID是原子性(atomicity)、一致性(consistency)、隔离性(isolation)和持久性(durability)的缩写。事务的原子性表示事务执行过程中的任何失败都将导致事务所做的任何修改失效。一致性表示当事务执行失败时,所有被该事务影响的数据都应该恢复到事务执行前的状
- Linux awk命令详解
510888780
linux
一. AWK 说明
awk是一种编程语言,用于在linux/unix下对文本和数据进行处理。数据可以来自标准输入、一个或多个文件,或其它命令的输出。它支持用户自定义函数和动态正则表达式等先进功能,是linux/unix下的一个强大编程工具。它在命令行中使用,但更多是作为脚本来使用。
awk的处理文本和数据的方式:它逐行扫描文件,从第一行到
- android permission
布衣凌宇
Permission
<uses-permission android:name="android.permission.ACCESS_CHECKIN_PROPERTIES" ></uses-permission>允许读写访问"properties"表在checkin数据库中,改值可以修改上传
<uses-permission android:na
- Oracle和谷歌Java Android官司将推迟
aijuans
javaoracle
北京时间 10 月 7 日,据国外媒体报道,Oracle 和谷歌之间一场等待已久的官司可能会推迟至 10 月 17 日以后进行,这场官司的内容是 Android 操作系统所谓的 Java 专利权之争。本案法官 William Alsup 称根据专利权专家 Florian Mueller 的预测,谷歌 Oracle 案很可能会被推迟。 该案中的第二波辩护被安排在 10 月 17 日出庭,从目前看来
- linux shell 常用命令
antlove
linuxshellcommand
grep [options] [regex] [files]
/var/root # grep -n "o" *
hello.c:1:/* This C source can be compiled with:
- Java解析XML配置数据库连接(DOM技术连接 SAX技术连接)
百合不是茶
sax技术Java解析xml文档dom技术XML配置数据库连接
XML配置数据库文件的连接其实是个很简单的问题,为什么到现在才写出来主要是昨天在网上看了别人写的,然后一直陷入其中,最后发现不能自拔 所以今天决定自己完成 ,,,,现将代码与思路贴出来供大家一起学习
XML配置数据库的连接主要技术点的博客;
JDBC编程 : JDBC连接数据库
DOM解析XML: DOM解析XML文件
SA
- underscore.js 学习(二)
bijian1013
JavaScriptunderscore
Array Functions 所有数组函数对参数对象一样适用。1.first _.first(array, [n]) 别名: head, take 返回array的第一个元素,设置了参数n,就
- plSql介绍
bijian1013
oracle数据库plsql
/*
* PL/SQL 程序设计学习笔记
* 学习plSql介绍.pdf
* 时间:2010-10-05
*/
--创建DEPT表
create table DEPT
(
DEPTNO NUMBER(10),
DNAME NVARCHAR2(255),
LOC NVARCHAR2(255)
)
delete dept;
select
- 【Nginx一】Nginx安装与总体介绍
bit1129
nginx
启动、停止、重新加载Nginx
nginx 启动Nginx服务器,不需要任何参数u
nginx -s stop 快速(强制)关系Nginx服务器
nginx -s quit 优雅的关闭Nginx服务器
nginx -s reload 重新加载Nginx服务器的配置文件
nginx -s reopen 重新打开Nginx日志文件
- spring mvc开发中浏览器兼容的奇怪问题
bitray
jqueryAjaxspringMVC浏览器上传文件
最近个人开发一个小的OA项目,属于复习阶段.使用的技术主要是spring mvc作为前端框架,mybatis作为数据库持久化技术.前台使用jquery和一些jquery的插件.
在开发到中间阶段时候发现自己好像忽略了一个小问题,整个项目一直在firefox下测试,没有在IE下测试,不确定是否会出现兼容问题.由于jquer
- Lua的io库函数列表
ronin47
lua io
1、io表调用方式:使用io表,io.open将返回指定文件的描述,并且所有的操作将围绕这个文件描述
io表同样提供三种预定义的文件描述io.stdin,io.stdout,io.stderr
2、文件句柄直接调用方式,即使用file:XXX()函数方式进行操作,其中file为io.open()返回的文件句柄
多数I/O函数调用失败时返回nil加错误信息,有些函数成功时返回nil
- java-26-左旋转字符串
bylijinnan
java
public class LeftRotateString {
/**
* Q 26 左旋转字符串
* 题目:定义字符串的左旋转操作:把字符串前面的若干个字符移动到字符串的尾部。
* 如把字符串abcdef左旋转2位得到字符串cdefab。
* 请实现字符串左旋转的函数。要求时间对长度为n的字符串操作的复杂度为O(n),辅助内存为O(1)。
*/
pu
- 《vi中的替换艺术》-linux命令五分钟系列之十一
cfyme
linux命令
vi方面的内容不知道分类到哪里好,就放到《Linux命令五分钟系列》里吧!
今天编程,关于栈的一个小例子,其间我需要把”S.”替换为”S->”(替换不包括双引号)。
其实这个不难,不过我觉得应该总结一下vi里的替换技术了,以备以后查阅。
1
所有替换方案都要在冒号“:”状态下书写。
2
如果想将abc替换为xyz,那么就这样
:s/abc/xyz/
不过要特别