- 《CPython Internals》阅读笔记:p232-p249
python
《CPythonInternals》学习第13天,p232-p249总结,总计18页。一、技术总结无。二、英语总结(生词:1)1.overhead(1)overhead:over-("above")+head(“toppart,uppermostsection”)overhead的字面意思是:abovethehead,后来演变成"representthingssituatedaboveormeta
- sql server 杂记
yangchz
sqlserver
sqlserver杂记sqlserver中也具有标准SQL的三层结构:数据库(DATABASE)——模式/框架(SCHEMA)——表(TABLE)。但是在对某个表进行操作时,会有下面这三条语句:SELECT*FROMrelevantDB.relevantSchema.someTable;SELECT*FROMrelevantSchema.someTable;SELECT*FROMsomeTable
- 【AI Agent系列】【MetaGPT多智能体学习】1. 再理解 AI Agent - 经典案例和热门框架综述
同学小张
大模型人工智能学习gpt笔记MetaGPTagi智能体
本系列文章跟随《MetaGPT多智能体课程》(https://github.com/datawhalechina/hugging-multi-agent),深入理解并实践多智能体系统的开发。本文为该课程的第二章(智能体综述及多智能体框架介绍)笔记)。文章目录0.温故而知新-再看AIAgent是什么1.一个AIAgent实例介绍-BabyAGI2.多智能体框架比较3.警告?0.温故而知新-再看AIA
- 蓝桥杯真题 - 公因数匹配 - 题解
ExRoc
蓝桥杯算法c++
题目链接:https://www.lanqiao.cn/problems/3525/learning/个人评价:难度2星(满星:5)前置知识:调和级数整体思路题目描述不严谨,没说在无解的情况下要输出什么(比如nnn个111),所以我们先假设数据保证有解;从222到10610^6106枚举xxx作为约数,对于约数xxx去扫所有xxx的倍数,总共需要扫n2+n3+n4+⋯+nn≈nlnn\frac{
- 蓝桥杯真题 - 子树的大小 - 题解
ExRoc
蓝桥杯算法c++
题目链接:https://www.lanqiao.cn/problems/3526/learning/个人评价:难度2星(满星:5)前置知识:无整体思路整体将节点编号−1-1−1,通过找规律可以发现,节点iii下一层最左边的节点编号是im+1im+1im+1,最右边的节点编号是im+mim+mim+m;用l,rl,rl,r分别标记当前层子树的最小节点编号与最大节点编号,每次让最左边的节点往下一层的
- C#遇见TensorFlow.NET:开启机器学习的全新时代
墨夶
C#学习资料1机器学习c#tensorflow
在当今快速发展的科技世界里,机器学习(MachineLearning,ML)已经成为推动创新的重要力量。从个性化推荐系统到自动驾驶汽车,ML的应用无处不在。对于那些习惯于使用C#进行开发的程序员来说,将机器学习集成到他们的项目中似乎是一项具有挑战性的任务。但随着TensorFlow.NET的出现,这一切变得不再困难。今天,我们将一起探索如何利用这一强大的工具,在熟悉的.NET环境中轻松构建、训练和
- 学英语学技术:Elasticsearch 线程池
学会了没
elasticsearch大数据搜索引擎
单词汉语意思音标allocate分配/ˈæləˌkeɪt/coordination协调/koʊˌɔːrdɪˈneɪʃn/deprecated废弃的/ˈdɛprəˌkeɪtɪd/elasticsearch弹性搜索(专有名词)/ˌɛlɪkˈsɜːrtʃ/execute执行/ˈɛksɪˌkjuːt/generic通用的/dʒəˈnɛrɪk/initial初始的/ɪˈnɪʃəl/metadata元数据/ˈ
- 【JVM】—G1 GC日志详解
一棵___大树
JVMjvm
G1GC日志详解⭐⭐⭐⭐⭐⭐Github主页https://github.com/A-BigTree笔记链接https://github.com/A-BigTree/Code_Learning⭐⭐⭐⭐⭐⭐如果可以,麻烦各位看官顺手点个star~文章目录G1GC日志详解1G1GC周期2G1日志开启与设置3YoungGC日志4MixedGC5FullGC关于G1回收器的前置知识点:【JVM】—深入理解
- NLP 中文拼写检测纠正论文-04-Learning from the Dictionary
后端java
拼写纠正系列NLP中文拼写检测实现思路NLP中文拼写检测纠正算法整理NLP英文拼写算法,如果提升100W倍的性能?NLP中文拼写检测纠正Paperjava实现中英文拼写检查和错误纠正?可我只会写CRUD啊!一个提升英文单词拼写检测性能1000倍的算法?单词拼写纠正-03-leetcodeedit-distance72.力扣编辑距离NLP开源项目nlp-hanzi-similar汉字相似度word-
- 【已解决】ImportError: libnvinfer.so.8: cannot open shared object file: No such file or directory
小小小小祥
python
问题描述:按照tensorrt官方安装文档:https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html#installing-tar安装完成后,使用python测试导入tensorrtimporttensorrt上述代码报错:Traceback(mostrecentcalllast):File“main.py”,li
- ASPICE 4.0引领自动驾驶未来:机器学习模型的特点与实践
亚远景aspice
机器学习自动驾驶人工智能
ASPICE4.0-ML机器学习模型是针对汽车行业,特别是在汽车软件开发中,针对机器学习(MachineLearning,ML)应用的特定标准和过程。ASPICE(AutomotiveSPICE)是一种基于软件控制的系统开发过程的国际标准,旨在提升软件开发过程的质量、效率和可靠性。ASPICE4.0中的ML模型部分则进一步细化了机器学习在汽车软件开发中的具体要求和流程。以下是对ASPICE4.0-
- 利用Python运行Ansys Apdl
ssssasda
ansysapdl流处理批处理python
Ansys流处理1.学习资源2.版本要求3.pymapdl安装流程4.初始设置和本地启动mapdl5.PyMAPDL语法6.工具库7.与window的交互接口1.学习资源Ansys官网:https://www.ansys.com/zh-cnAnsysAcademic(Ansys学术):https://www.ansys.com/zh-cn/academicAnsysLearningForum(An
- python的抽象类
§闪灵,~星~~
python抽象类
python抽象类的实现可以借助库abc来实现先创建类A():importabcclassA(metaclass=abc.ABCMeta):#抽象类@abc.abstractmethod#声明抽象方法defread(self):
[email protected](self):passdef__str__(self):print("共有方法,__str__方法重写")接着
- Python安装出现严重错误的解决方法_0x80070643-安装时发生严重错误
_风筝
pythonpython
使用这个软件MicrosoftProgram_Install_and_Uninstall.meta.diagcab把关于Python一个个组件全部删除,然后就能够重新安装Python了修复阻止程序安装或删除的问题-Microsoft支持这里下载
- 【机器学习:三十二、强化学习:理论与应用】
KeyPan
机器学习机器学习机器人人工智能深度学习数据挖掘
1.强化学习概述**强化学习(ReinforcementLearning,RL)**是一种机器学习方法,旨在通过试验与反馈的交互,使智能体(Agent)在动态环境中学习决策策略,以最大化累积奖励(CumulativeReward)。相比监督学习和无监督学习,强化学习更关注长期目标,而非简单地从标签中学习。核心概念智能体(Agent):进行学习和决策的主体。环境(Environment):智能体所在
- 第三讲 隐语架构
huang8666
人工智能
第三讲隐语架构产品层白屏黑屏两大模块通过可视化产品,降低终端用户的体验和演示成本通过模块化API降低技术集成商的研发成本隐语产品SecretPad:轻量化安装快速验证POC可定制集成SecretNote:Notebook形式交互式建模多节点一站式管理和交互运行状态跟踪算法层PSI/PIR、DataAnalysis、FederatedLearningPSI(PrivateSetIntesection
- Python机器学习之XGBoost从入门到实战(基本理论说明)
雪域枫蓝
PythonAtificialIntelligence机器学习python分布式
Xgboost从基础到实战XGBoost:eXtremeGradientBoosting*应用机器学习领域的一个强有力的工具*GradientBootingMachines(GBM)的优化表现,快速有效—深盟分布式机器学习开源平台(DistributedmachinelearningCommunity,DMLC)的分支—DMLC也开源流行的深度学习库mxnet*GBM:Machine:机器学习模型
- HiveMetaException: Unknown version specified for initialization: 3.1.0(或者其他版本号)
一品_人生
mysqlhive大数据
遇到这个问题,也是很难发现的,查阅很多文章,乱七八糟,也可能是遇到的问题不相同吧,我们从以下两个方面去排查吧1.检查你的hive-site.xml和hive-env.sh,配置对就行,这个网上一大片,注意要正确。2.那就是你解压的hive压缩文件,然后发现要安装mysql,这时你会先检查你本地有没有mysql,使用find/-namemysql(罪源),然后你就一通删除,你没有发现你删除了一个hi
- Windows 11安装DeepSpeed报错(Unable to pre-compile async_io)问题解决
happy coding
windowsgpt
Windows11安装DeepSpeed报错(Unabletopre-compileasync_io)问题解决报错如下Preparingmetadata(setup.py)...errorerror:subprocess-exited-with-error×pythonsetup.pyegg_infodidnotrunsuccessfully.│exitcode:1╰─>[17linesofout
- Go实战全家桶之三十六: go动态创建结构体
leijmdas
gogo实战全家桶golang开发语言后端
开源:water/gowebfunc(self*PagedbRequest)CreateDbTableStru(meta*metadata.MetadataTable)reflect.Value{varmetaColService=service.NewMetadataFactroy()dbFields:=[]reflect.StructField{}for_,col:=rangemeta.Col
- 机器学习和深度学习的概念
你好呀我是裤裤
深度学习笔记机器学习深度学习人工智能
MachineLearning机器学习,可以看作是找一个函数。这个函数是人类找不到的,所以交给机器来找。DifferenttypesofFunctions**Regression:**函数的输出是一个数值forexample:**Classification:**给出选项,让机器去选择。forexample:检测一个邮件是不是垃圾文件,就可以通过这个来做。选项是两个:垃圾文件or非垃圾文件。下面,
- PLUTO:突破基于模仿学习的自动驾驶规划极限
硅谷秋水
机器学习自动驾驶人工智能自动驾驶人工智能机器学习计算机视觉
24年4月来自香港科技大学的论文“PLUTO:PushingtheLimitofImitationLearning-basedPlanningforAutonomousDriving”。PLUTO,突破基于模仿学习的自动驾驶规划极限。改进来自三个关键方面:一种纵向横向感知模型架构,可实现灵活多样的驾驶行为;一种创新的辅助损失计算方法,可广泛应用且可高效地进行批量计算;一种利用对比学习的训练框架,采
- VScode使用element-ui插件准备
web15286201346
面试学习路线阿里巴巴vscodeidevisualstudiocodejava-ee后端
文章目录插件1、Chinese(Simplified)LanguagePackforVisualStidioCode中文汉化包2、AutoCloseTag自动闭合标签3、AutoRenameTag尾部闭合标签同步修改4、BracketPairColorizer用不同颜色高亮显示匹配的括号5、HighlightMatchingTag高亮显示匹配标签6、Vscode-element-helper7、l
- 管理口令安全和资源(二)
远歌已逝
数据库安全oracle数据库
DBMS_METADATADBMS_METADATA是Oracle数据库中的一个包,它提供了用于管理数据库元数据的工具和过程。元数据是关于数据的数据,它描述了数据库的结构,包括表、视图、索引、存储过程、用户和其他数据库对象的信息。DBMS_METADATA包允许用户获取、修改和重建数据库对象的元数据。DBMS_METADATA包在Oracle9iRelease2(9.2.0.1)中首次引入,并在后
- MetaLife元宇宙星际社交网络:Web2.5到Web3的里程碑
傲气猫
区块链算法数字货币python
继元宇宙Metaverse在2021年火爆之后,Web3这个词的热度在2022年也开始飙升起来!原因就在于人们意识到构建在Web2之上的元宇宙对人类来说可能是致命的,只有构建在Web3之上的元宇宙才可能是开放的、无国界的、属于全人类的。在这个开放性的元宇宙里人类的数字资产才能得到真正的保护并在全球、甚至在星际之间流通。而MetaLife.Social这样的Web3去中心化星际社交网络(Interg
- 数据入湖的前提条件:数据标准 之 元数据注册
goTsHgo
开发技巧大数据大数据设计规范
元数据注册是数据入湖的重要前提条件之一,其核心目的是记录和管理数据的元信息(Metadata),为数据的理解、发现、管理、使用和治理提供依据。元数据是描述数据的“数据”,包括数据的结构、来源、用途等关键信息。下面从底层原理、操作步骤及背后原因进行全面解析。1.为什么需要元数据注册?1.1数据可发现性含义:元数据提供了关于数据的描述信息,使用户能够快速发现和定位所需数据。原理:在数据湖中,没有元数据
- Web3 赋能元宇宙项目:打破现实与虚拟的边界藩篱
Roun3
web3web3去中心化区块链隐私保护智能合约
随着科技的迅速发展,元宇宙(Metaverse)逐渐从一个科幻概念变成了现实的探索领域。元宇宙代表着一个全新的虚拟世界,其中不仅仅是娱乐和游戏,更涉及到社交、工作、教育等多方面的深度融合。然而,要实现一个与现实世界无缝连接、体验丰富的元宇宙,技术的赋能尤为重要。Web3,作为新时代互联网技术的重要组成部分,正为元宇宙的发展注入强大的动力。Web3与元宇宙的紧密联系Web3,作为去中心化的互联网形态
- 官宣开源 阿里云与清华大学共建AI大模型推理项目Mooncake
阿里云大模型
2024年6月,国内优质大模型应用月之暗面Kimi与清华大学MADSys实验室(MachineLearning,AI,BigDataSystemsLab)联合发布了以KVCache为中心的大模型推理架构Mooncake。通过使用以KVCache为中心的PD分离和以存换算架构,大幅提升大模型应用Kimi智能助手推理吞吐的同时有效降低了推理成本,自发布以来受到业界广泛关注。近日,清华大学和研究组织9#
- 【机器学习】主动学习-增加标签的操作方法-样本池采样(Pool-Based Sampling)
IT古董
机器学习机器学习学习人工智能
Pool-BasedSamplingPool-basedsampling是一种主动学习(ActiveLearning)方法,与流式选择性采样不同,它假设有一个预先定义的未标注样本池,算法从中选择最有价值的样本进行标注,以提升模型的性能。这种方法广泛应用于需要人工标注的场景,例如文本分类、图像识别等。核心思想预先准备一个未标注数据池(UnlabeledDataPool)。使用初始标注数据训练一个模型
- 中间件 MetaQ
Zero_pl
中间件
MetaQ(全称Metamorphosis)是一个高性能、高可用、可扩展的分布式消息中间件,其思路起源于LinkedIn的Kafka,但并不是Kafka的一个Copy。以下是关于MetaQ的详细介绍:基本特性•高性能:具有消息存储顺序写、吞吐量大等特性,适用于大吞吐量、顺序消息、广播和日志数据传输等场景。•高可用:基于其物理部署架构实现高可用性。生产者为消息定义topic后,消费者可以订阅该top
- jquery实现的jsonp掉java后台
知了ing
javajsonpjquery
什么是JSONP?
先说说JSONP是怎么产生的:
其实网上关于JSONP的讲解有很多,但却千篇一律,而且云里雾里,对于很多刚接触的人来讲理解起来有些困难,小可不才,试着用自己的方式来阐释一下这个问题,看看是否有帮助。
1、一个众所周知的问题,Ajax直接请求普通文件存在跨域无权限访问的问题,甭管你是静态页面、动态网页、web服务、WCF,只要是跨域请求,一律不准;
2、
- Struts2学习笔记
caoyong
struts2
SSH : Spring + Struts2 + Hibernate
三层架构(表示层,业务逻辑层,数据访问层) MVC模式 (Model View Controller)
分层原则:单向依赖,接口耦合
1、Struts2 = Struts + Webwork
2、搭建struts2开发环境
a>、到www.apac
- SpringMVC学习之后台往前台传值方法
满城风雨近重阳
springMVC
springMVC控制器往前台传值的方法有以下几种:
1.ModelAndView
通过往ModelAndView中存放viewName:目标地址和attribute参数来实现传参:
ModelAndView mv=new ModelAndView();
mv.setViewName="success
- WebService存在的必要性?
一炮送你回车库
webservice
做Java的经常在选择Webservice框架上徘徊很久,Axis Xfire Axis2 CXF ,他们只有一个功能,发布HTTP服务然后用XML做数据传输。
是的,他们就做了两个功能,发布一个http服务让客户端或者浏览器连接,接收xml参数并发送xml结果。
当在不同的平台间传输数据时,就需要一个都能解析的数据格式。
但是为什么要使用xml呢?不能使json或者其他通用数据
- js年份下拉框
3213213333332132
java web ee
<div id="divValue">test...</div>测试
//年份
<select id="year"></select>
<script type="text/javascript">
window.onload =
- 简单链式调用的实现技术
归来朝歌
方法调用链式反应编程思想
在编程中,我们可以经常遇到这样一种场景:一个实例不断调用它自身的方法,像一条链条一样进行调用
这样的调用你可能在Ajax中,在页面中添加标签:
$("<p>").append($("<span>").text(list[i].name)).appendTo("#result");
也可能在HQ
- JAVA调用.net 发布的webservice 接口
darkranger
webservice
/**
* @Title: callInvoke
* @Description: TODO(调用接口公共方法)
* @param @param url 地址
* @param @param method 方法
* @param @param pama 参数
* @param @return
* @param @throws BusinessException
- Javascript模糊查找 | 第一章 循环不能不重视。
aijuans
Way
最近受我的朋友委托用js+HTML做一个像手册一样的程序,里面要有可展开的大纲,模糊查找等功能。我这个人说实在的懒,本来是不愿意的,但想起了父亲以前教我要给朋友搞好关系,再加上这也可以巩固自己的js技术,于是就开始开发这个程序,没想到却出了点小问题,我做的查找只能绝对查找。具体的js代码如下:
function search(){
var arr=new Array("my
- 狼和羊,该怎么抉择
atongyeye
工作
狼和羊,该怎么抉择
在做一个链家的小项目,只有我和另外一个同事两个人负责,各负责一部分接口,我的接口写完,并全部测联调试通过。所以工作就剩下一下细枝末节的,工作就轻松很多。每天会帮另一个同事测试一些功能点,协助他完成一些业务型不强的工作。
今天早上到公司没多久,领导就在QQ上给我发信息,让我多协助同事测试,让我积极主动些,有点责任心等等,我听了这话,心里面立马凉半截,首先一个领导轻易说
- 读取android系统的联系人拨号
百合不是茶
androidsqlite数据库内容提供者系统服务的使用
联系人的姓名和号码是保存在不同的表中,不要一下子把号码查询来,我开始就是把姓名和电话同时查询出来的,导致系统非常的慢
关键代码:
1, 使用javabean操作存储读取到的数据
package com.example.bean;
/**
*
* @author Admini
- ORACLE自定义异常
bijian1013
数据库自定义异常
实例:
CREATE OR REPLACE PROCEDURE test_Exception
(
ParameterA IN varchar2,
ParameterB IN varchar2,
ErrorCode OUT varchar2 --返回值,错误编码
)
AS
/*以下是一些变量的定义*/
V1 NUMBER;
V2 nvarc
- 查看端号使用情况
征客丶
windows
一、查看端口
在windows命令行窗口下执行:
>netstat -aon|findstr "8080"
显示结果:
TCP 127.0.0.1:80 0.0.0.0:0 &
- 【Spark二十】运行Spark Streaming的NetworkWordCount实例
bit1129
wordcount
Spark Streaming简介
NetworkWordCount代码
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
- Struts2 与 SpringMVC的比较
BlueSkator
struts2spring mvc
1. 机制:spring mvc的入口是servlet,而struts2是filter,这样就导致了二者的机制不同。 2. 性能:spring会稍微比struts快。spring mvc是基于方法的设计,而sturts是基于类,每次发一次请求都会实例一个action,每个action都会被注入属性,而spring基于方法,粒度更细,但要小心把握像在servlet控制数据一样。spring
- Hibernate在更新时,是可以不用session的update方法的(转帖)
BreakingBad
Hibernateupdate
地址:http://blog.csdn.net/plpblue/article/details/9304459
public void synDevNameWithItil()
{Session session = null;Transaction tr = null;try{session = HibernateUtil.getSession();tr = session.beginTran
- 读《研磨设计模式》-代码笔记-观察者模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
import java.util.Observable;
import java.util.Observer;
/**
* “观
- 重置MySQL密码
chenhbc
mysql重置密码忘记密码
如果你也像我这么健忘,把MySQL的密码搞忘记了,经过下面几个步骤就可以重置了(以Windows为例,Linux/Unix类似):
1、关闭MySQL服务
2、打开CMD,进入MySQL安装目录的bin目录下,以跳过权限检查的方式启动MySQL
mysqld --skip-grant-tables
3、新开一个CMD窗口,进入MySQL
mysql -uroot
 
- 再谈系统论,控制论和信息论
comsci
设计模式生物能源企业应用领域模型
再谈系统论,控制论和信息论
偶然看
- oracle moving window size与 AWR retention period关系
daizj
oracle
转自: http://tomszrp.itpub.net/post/11835/494147
晚上在做11gR1的一个awrrpt报告时,顺便想调整一下AWR snapshot的保留时间,结果遇到了ORA-13541这样的错误.下面是这个问题的发生和解决过程.
SQL> select * from v$version;
BANNER
-------------------
- Python版B树
dieslrae
python
话说以前的树都用java写的,最近发现python有点生疏了,于是用python写了个B树实现,B树在索引领域用得还是蛮多了,如果没记错mysql的默认索引好像就是B树...
首先是数据实体对象,很简单,只存放key,value
class Entity(object):
'''数据实体'''
def __init__(self,key,value)
- C语言冒泡排序
dcj3sjt126com
算法
代码示例:
# include <stdio.h>
//冒泡排序
void sort(int * a, int len)
{
int i, j, t;
for (i=0; i<len-1; i++)
{
for (j=0; j<len-1-i; j++)
{
if (a[j] > a[j+1]) // >表示升序
- 自定义导航栏样式
dcj3sjt126com
自定义
-(void)setupAppAppearance
{
[[UILabel appearance] setFont:[UIFont fontWithName:@"FZLTHK—GBK1-0" size:20]];
[UIButton appearance].titleLabel.font =[UIFont fontWithName:@"FZLTH
- 11.性能优化-优化-JVM参数总结
frank1234
jvm参数性能优化
1.堆
-Xms --初始堆大小
-Xmx --最大堆大小
-Xmn --新生代大小
-Xss --线程栈大小
-XX:PermSize --永久代初始大小
-XX:MaxPermSize --永久代最大值
-XX:SurvivorRatio --新生代和suvivor比例,默认为8
-XX:TargetSurvivorRatio --survivor可使用
- nginx日志分割 for linux
HarborChung
nginxlinux脚本
nginx日志分割 for linux 默认情况下,nginx是不分割访问日志的,久而久之,网站的日志文件将会越来越大,占用空间不说,如果有问题要查看网站的日志的话,庞大的文件也将很难打开,于是便有了下面的脚本 使用方法,先将以下脚本保存为 cutlog.sh,放在/root 目录下,然后给予此脚本执行的权限
复制代码代码如下:
chmo
- Spring4新特性——泛型限定式依赖注入
jinnianshilongnian
springspring4泛型式依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- centOS安装GCC和G++
liuxihope
centosgcc
Centos支持yum安装,安装软件一般格式为yum install .......,注意安装时要先成为root用户。
按照这个思路,我想安装过程如下:
安装gcc:yum install gcc
安装g++: yum install g++
实际操作过程发现,只能有gcc安装成功,而g++安装失败,提示g++ command not found。上网查了一下,正确安装应该
- 第13章 Ajax进阶(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- How to determine BusinessObjects service pack and fix pack
blueoxygen
BO
http://bukhantsov.org/2011/08/how-to-determine-businessobjects-service-pack-and-fix-pack/
The table below is helpful. Reference
BOE XI 3.x
12.0.0.
y BOE XI 3.0 12.0.
x.
y BO
- Oracle里的自增字段设置
tomcat_oracle
oracle
大家都知道吧,这很坑,尤其是用惯了mysql里的自增字段设置,结果oracle里面没有的。oh,no 我用的是12c版本的,它有一个新特性,可以这样设置自增序列,在创建表是,把id设置为自增序列
create table t
(
id number generated by default as identity (start with 1 increment b
- Spring Security(01)——初体验
yang_winnie
springSecurity
Spring Security(01)——初体验
博客分类: spring Security
Spring Security入门安全认证
首先我们为Spring Security专门建立一个Spring的配置文件,该文件就专门用来作为Spring Security的配置