Apache Hadoop 是一个开源软件框架,可安装在一个商用机器集群中,使机器可彼此通信并协同工作,以高度分布式的方式共同存储和处理大量数据。最初,Hadoop 包含以下两个主要组件:Hadoop Distributed File System (HDFS) 和一个分布式计算引擎,该引擎支持以 MapReduce 作业的形式实现和运行程序。
MapReduce 是 Google 推广的一个简单的编程模型,它对以高度并行和可扩展的方式处理大数据集很有用。MapReduce 的灵感来源于函数式编程,用户可将他们的计算表达为 map 和 reduce 函数,将数据作为键值对来处理。Hadoop 提供了一个高级 API 来在各种语言中实现自定义的 map 和 reduce 函数。
Hadoop 还提供了软件基础架构,以一系列 map 和 reduce 任务的形式运行 MapReduce 作业。Map 任务 在输入数据的子集上调用 map 函数。在完成这些调用后,reduce 任务 开始在 map 函数所生成的中间数据上调用 reduce 任务,生成最终的输出。 map 和 reduce 任务彼此单独运行,这支持并行和容错的计算。
最重要的是,Hadoop 基础架构负责处理分布式处理的所有复杂方面:并行化、调度、资源管理、机器间通信、软件和硬件故障处理,等等。得益于这种干净的抽象,实现处理数百(或者甚至数千)个机器上的数 TB 数据的分布式应用程序从未像现在这么容易过,甚至对于之前没有使用分布式系统的经验的开发人员也是如此。
Block: 在HDFS中,每个文件都是采用的分块的方式存储,每个block放在不同的datanode上,每个block的标识是一个三元组(block id, numBytes,generationStamp),其中block id是具有唯一性,具体分配是由namenode节点设置,然后再由datanode上建立block文件,同时建立对应block meta文件。
Packet: 在DFSclient与DataNode之间通信的过程中,发送和接受数据过程都是以一个packet为基础的方式进行。
Chunk: 中文名字也可以称为块,但是为了与block区分,还是称之为chunk。在DFSClient与DataNode之间通信的过程中,由于文件采用的是基于块的方式来进行的,但是在发送数据的过程中是以packet的方式来进行的,每个packet包含了多个chunk,同时对于每个chunk进行checksum计算,生成checksum bytes。
- 一个文件被拆成多个block持续化存储(block size 由配置文件参数决定)
- 数据通讯过程中一个 block 被拆成 多个 packet
- 一个 packet 包含多个 chunk
Packet结构与定义: Packet分为两类,一类是实际数据包,另一类是heatbeat包。一个Packet数据包的组成结构,如图所示:
上图中,一个Packet是由Header和Data两部分组成,其中Header部分包含了一个Packet的概要属性信息,如下表所示:
- Data部分是一个Packet的实际数据部分,主要包括一个4字节校验和(Checksum)与一个Chunk部分,Chunk部分最大为512字节。
- 在构建一个Packet的过程中,首先将字节流数据写入一个buffer缓冲区中,也就是从偏移量为25的位置(checksumStart)开始写Packet数据Chunk的Checksum部分,从偏移量为533的位置(dataStart)开始写Packet数据的Chunk Data部分,直到一个Packet创建完成为止。
- 当写一个文件的最后一个Block的最后一个Packet时,如果一个Packet的大小未能达到最大长度,也就是上图对应的缓冲区中,Checksum与Chunk Data之间还保留了一段未被写过的缓冲区位置,在发送这个Packet之前,会检查Chunksum与Chunk Data之间的缓冲区是否为空白缓冲区(gap),如果有则将Chunk Data部分向前移动,使得Chunk Data 1与Chunk Checksum N相邻,然后才会被发送到DataNode节点。
HDFS Client: 系统使用者,调用HDFS API操作文件;与NameNode交互获取文件元数据;与DataNode交互进行数据读写, 注意:写数据时文件切分由Client完成。
NameNode: Master节点(也称元数据节点),是系统唯一的管理者。负责元数据的管理(名称空间和数据块映射信息);配置副本策略;处理客户端请求。
DataNode: 数据存储节点(也称Slave节点),存储实际的数据;执行数据块的读写;汇报存储信息给NameNode。
Secondary NameNode: 小弟角色,分担大哥NameNode的工作量;是NameNode的冷备份;合并fsimage和fsedits然后再发给NameNode, 注意:在hadoop 2.x 版本,当启用HDFS HA时,将没有这一角色。(详见HDFS HA基本架构)。
热备份:b是a的热备份,如果a坏掉。那么b马上运行代替a的工作。
冷备份:b是a的冷备份,如果a坏掉。那么b不能马上代替a工作。但是b上存储a的一些信息,减少a坏掉之后的损失。
NameNode是整个文件系统的管理节点,也是HDFS中最复杂的一个实体,它维护着HDFS文件系统中最重要的两个关系:
HDFS文件系统中的文件目录树,以及文件的数据块索引,即每个文件对应的数据块列表。
数据块和数据节点的对应关系,即某一块数据块保存在哪些数据节点的信息。
fsimage\edits 是序列化后的文件,想要查看或编辑里面的内容,可通过 HDFS提供的 oiv\oev 命令,如下:
- 命令: hdfs oiv (offline image viewer) 用于将fsimage文件的内容转储到指定文件中以便于阅读,,如文本文件、XML文件,该命令需要以下参数:
- -i (必填参数) –inputFile 输入FSImage文件
- -o (必填参数) –outputFile 输出转换后的文件,如果存在,则会覆盖
- -p (可选参数) –processor 将FSImage文件转换成哪种格式: (Ls|XML|FileDistribution).默认为Ls
- 示例:hdfs oiv -i /data1/hadoop/dfs/name/current/fsimage_0000000000019372521 -o /home/hadoop/fsimage.txt
- 命令:hdfs oev (offline edits viewer 离线edits查看器)的缩写, 该工具只操作文件因而并不需要hadoop集群处于运行状态。
- 示例: hdfs oev -i edits_0000000000000042778-0000000000000042779 -o edits.xml
- 支持的输出格式有binary(hadoop使用的二进制格式)、xml(在不使用参数p时的默认输出格式)和stats(输出edits文件的统计信息)。
NameNode管理着DataNode,接收DataNode的注册、心跳、数据块提交等信息的上报,并且在心跳中发送数据块复制、删除、恢复等指令;同时,NameNode还为客户端对文件系统目录树的操作和对文件数据读写、对HDFS系统进行管理提供支持。
定期合并 fsimage 和 edits 日志,将 edits 日志文件大小控制在一个限度下。
Facebook AvatarNode:Facebook有强大的运维做后盾,所以Avatarnode只是Hot Standby,并没有自动切换,当主NN失效的时候,需要管理员确认,然后手动把对外提供服务的虚拟IP映射到Standby NN,这样做的好处是确保不会发生脑裂的场景。其某些设计思想和Hadoop 2.0里的HA非常相似,从时间上来看,Hadoop 2.0应该是借鉴了Facebook的做法
PrimaryNN与StandbyNN之间通过NFS来共享FsEdits、FsImage文件,这样主备NN之间就拥有了一致的目录树和block信息;而block的位置信息,可以根据DN向两个NN上报的信息过程中构建起来。这样再辅以虚IP,可以较好达到主备NN快速热切的目的。但是显然,这里的NFS又引入了新的SPOF
多个NN共用一个集群里的存储资源,每个NN都可以单独对外提供服务
block持续化结构:
每个Block文件(如上图中blk_1084013198文件)都对应一个meta文件(如上图中blk_1084013198_10273532.meta文件),Block文件是一个一个Chunk的二进制数据(每个Chunk的大小是512字节),而meta文件是与每一个Chunk对应的Checksum数据,是序列化形式存储
2.X版本默认block的大小是 128M。
1. Client将FileA按64M分块。分成两块,block1和Block2;
2. Client向nameNode发送写数据请求,如图蓝色虚线①——>
3. NameNode节点,记录block信息。并返回可用的DataNode,如粉色虚线②———>
Block1: host2,host1,host3
Block2: host7,host8,host4
4. client向DataNode发送block1;发送过程是以流式写入,流式写入过程如下:
- 将64M的block1按64k的packet划分
- 然后将第一个packet发送给host2
- host2接收完后,将第一个packet发送给host1,同时client向host2发送第二个packet
- host1接收完第一个packet后,发送给host3,同时接收host2发来的第二个packet
- 以此类推,如图红线实线所示,直到将block1发送完毕
- host2,host1,host3向NameNode,host2向Client发送通知,说“消息发送完了”。如图粉红颜色实线所示
- client收到host2发来的消息后,向namenode发送消息,说我写完了。这样就真完成了。如图黄色粗实线
- 发送完block1后,再向host7,host8,host4发送block2,如图蓝色实线所示。
5. 时序图如下:
在 YARN 架构中,一个全局 ResourceManager 以主要后台进程的形式运行,它通常在专用机器上运行,在各种竞争的应用程序之间仲裁可用的集群资源。ResourceManager 会追踪集群中有多少可用的活动节点和资源,协调用户提交的哪些应用程序应该在何时获取这些资源。ResourceManager 是惟一拥有此信息的进程,所以它可通过某种共享的、安全的、多租户的方式制定分配(或者调度)决策(例如,依据应用程序优先级、队列容量、ACLs、数据位置等)。
在用户提交一个应用程序时,一个称为 ApplicationMaster 的轻量型进程实例会启动来协调应用程序内的所有任务的执行。这包括监视任务,重新启动失败的任务,推测性地运行缓慢的任务,以及计算应用程序计数器值的总和。这些职责以前分配给所有作业的单个 JobTracker。ApplicationMaster 和属于它的应用程序的任务,在受 NodeManager 控制的资源容器中运行。
NodeManager 是 TaskTracker 的一种更加普通和高效的版本。没有固定数量的 map 和 reduce slots,NodeManager 拥有许多动态创建的资源容器。容器的大小取决于它所包含的资源量,比如内存、CPU、磁盘和网络 IO。目前,仅支持内存和 CPU (YARN-3)。未来可使用 cgroups 来控制磁盘和网络 IO。一个节点上的容器数量,由配置参数与专用于从属后台进程和操作系统的资源以外的节点资源总量(比如总 CPU 数和总内存)共同决定。
有趣的是,ApplicationMaster 可在容器内运行任何类型的任务。例如,MapReduce ApplicationMaster 请求一个容器来启动 map 或 reduce 任务,而 Giraph ApplicationMaster 请求一个容器来运行 Giraph 任务。您还可以实现一个自定义的 ApplicationMaster 来运行特定的任务,进而发明出一种全新的分布式应用程序框架,改变大数据世界的格局。您可以查阅 Apache Twill,它旨在简化 YARN 之上的分布式应用程序的编写。
在 YARN 中,MapReduce 降级为一个分布式应用程序的一个角色(但仍是一个非常流行且有用的角色),现在称为 MRv2。MRv2 是经典 MapReduce 引擎(现在称为 MRv1)的重现,运行在 YARN 之上。
ResourceManager、NodeManager 和容器都不关心应用程序或任务的类型。所有特定于应用程序框架的代码都转移到它的 ApplicationMaster,以便任何分布式框架都可以受 YARN 支持 — 只要有人为它实现了相应的 ApplicationMaster。
得益于这个一般性的方法,Hadoop YARN 集群运行许多不同工作负载的梦想才得以实现。想像一下:您数据中心中的一个 Hadoop 集群可运行 MapReduce、Giraph、Storm、Spark、Tez/Impala、MPI 等。
单一集群方法明显提供了大量优势,其中包括:
更高的集群利用率,一个框架未使用的资源可由另一个框架使用
更低的操作成本,因为只有一个 “包办一切的” 集群需要管理和调节
更少的数据移动,无需在 Hadoop YARN 与在不同机器集群上运行的系统之间移动数据
管理单个集群还会得到一个更环保的数据处理解决方案。使用的数据中心空间更少,浪费的硅片更少,使用的电源更少,排放的碳更少,这只是因为我们在更小但更高效的 Hadoop 集群上运行同样的计算。
本节讨论在应用程序提交到 YARN 集群时,ResourceManager、ApplicationMaster、NodeManagers 和容器如何相互交互。下图显示了一个例子。
假设用户采用与 MRv1 中相同的方式键入 hadoop jar 命令,将应用程序提交到 ResourceManager。ResourceManager 维护在集群上运行的应用程序列表,以及每个活动的 NodeManager 上的可用资源列表。ResourceManager 需要确定哪个应用程序接下来应该获得一部分集群资源。该决策受到许多限制,比如队列容量、ACL 和公平性。ResourceManager 使用一个可插拔的 Scheduler。Scheduler 仅执行调度;它管理谁在何时获取集群资源(以容器的形式),但不会对应用程序内的任务执行任何监视,所以它不会尝试重新启动失败的任务。
在 ResourceManager 接受一个新应用程序提交时,Scheduler 制定的第一个决策是选择将用来运行 ApplicationMaster 的容器。在 ApplicationMaster 启动后,它将负责此应用程序的整个生命周期。首先也是最重要的是,它将资源请求发送到 ResourceManager,请求运行应用程序的任务所需的容器。资源请求是对一些容器的请求,用以满足一些资源需求,比如:
[1] 天戈朱, 《Hadoop(一):深度剖析HDFS原理》 http://www.cnblogs.com/tgzhu/p/5788634.html
[2] 天戈朱, 《Hadoop(二):HDFS HA原理及安装》http://www.cnblogs.com/tgzhu/p/5790565.html
[3] Edison Chou, 《Hadoop学习笔记—21.Hadoop2的改进内容简介》 http://www.cnblogs.com/edisonchou/p/4470682.html
[4] 指尖上的生活, 《HDFS原理解析(总体架构,读写操作流程)》http://www.cnblogs.com/xubiao/p/5579080.html
[5] Adam Kawa, 《YARN简介》http://www.ibm.com/developerworks/cn/data/library/bd-yarn-intro/