Ardupilot HAL学习

目录

文章目录

  • 目录
  • 摘要
  • 第一 AP_HAL 命名空间
  • 第二 HAL 类
  • 第三 同一套操作系统如何实现支持不同的硬件平台
    • 1.裸机代码
    • 2. ChiBios操作系统
    • 3. HAL_BOARD_EMPTY
    • 4. AP_HAL_F4Light
    • 5. AP_HAL_FLY MAPLE
    • 6. AP_HAL_Linux(支持linux系统的板)
    • 7. AP_HAL_PX4(NUTTX操作系统)
    • 8. AP_HAL_SITL(仿真SITL)
    • 9. AP_HAL_VRBRAIN

摘要



本节主要学习Ardupilot的Hal类,欢迎批评指正!



第一 AP_HAL 命名空间



Ardupilot中最重要的命名空间



namespace AP_HAL
{

    /*顶级纯虚拟类HAL---------Toplevel pure virtual class Hal.*/
    class HAL;

    /*驱动程序的顶级类名:-------Toplevel class names for drivers: */
    class UARTDriver;              //串口驱动类
    class I2CDevice;               //I2C设备类
    class I2CDeviceManager;        //I2C设备类管理
    class Device;                  //设备类

    class SPIDevice;               //SPI设备类
    class SPIDeviceDriver;         //SPI设备驱动类
    class SPIDeviceManager;        //SPI设备管理类

    class AnalogSource;            //模拟资源类
    class AnalogIn;                //模拟输入类
    class Storage;                 //存储类
    class DigitalSource;           //数字资源类
    class GPIO;                    //GPIO类
    class RCInput;                 //遥控器输入类
    class RCOutput;                //电机输出类
    class Scheduler;               //任务调度类
    class Semaphore;               //信号量类
    class OpticalFlow;             //光流传感器类

    class CANManager;              //CAN管理类
    class CAN;                     //CAN类

    class Util;                   //公用类

    /*实用类--------Utility Classes */
    class Print;
    class Stream;
    class BetterStream;

/********************************************************************************************************************************
* 定义指针函数的(过程、成员过程)------Typdefs for function pointers (Procedure, Member Procedure)
*  对于成员函数,我们使用FastDelegate委托类,它允许我们将成员函数封装为一个类型
*  For member functions we use the FastDelegate delegates class which allows us to encapculate a member function as a type
*******************************************************************************************************************************/
    typedef void(*Proc)(void);
    FUNCTOR_TYPEDEF(MemberProc, void);

 /************************************************************************************************************************************
 * 所有平台上所有现有SPI设备的全局名称。--------Global names for all of the existing SPI devices on all platforms.
 *************************************************************************************************************************************/

    enum SPIDeviceType
	{
        //设备使用AP_HAL:SPIDevice抽象类--------Devices using AP_HAL::SPIDevice abstraction
        SPIDevice_Type              = -1,
    };

    //必须有HALs具体实现-------------------- Must be implemented by the concrete HALs.
    const HAL& get_HAL();
}

Ardupilot HAL学习_第1张图片



第二 HAL 类



class AP_HAL::HAL
{
public:
	//构造函数初始化
    HAL(AP_HAL::UARTDriver* _uartA, // console-------usb
        AP_HAL::UARTDriver* _uartB, // 1st GPS-------uart1
        AP_HAL::UARTDriver* _uartC, // telem1--------uart2
        AP_HAL::UARTDriver* _uartD, // telem2--------uart3
        AP_HAL::UARTDriver* _uartE, // 2nd GPS-------uart4
        AP_HAL::UARTDriver* _uartF, // extra1--------uart6
        AP_HAL::UARTDriver* _uartG, // extra2--------uart7
        AP_HAL::I2CDeviceManager* _i2c_mgr,   //i2c信号
        AP_HAL::SPIDeviceManager* _spi,       //spi信号
        AP_HAL::AnalogIn*   _analogin,        //模拟信号输入
        AP_HAL::Storage*    _storage,         //存储
        AP_HAL::UARTDriver* _console,         //终端
        AP_HAL::GPIO*       _gpio,            //gpio
        AP_HAL::RCInput*    _rcin,            //rc输入
        AP_HAL::RCOutput*   _rcout,           //rc输出
        AP_HAL::Scheduler*  _scheduler,       //任务调动
        AP_HAL::Util*       _util,            //公用函数
        AP_HAL::OpticalFlow *_opticalflow,    //光流函数
#if HAL_WITH_UAVCAN
        AP_HAL::CANManager* _can_mgr[MAX_NUMBER_OF_CAN_DRIVERS])
#else
        AP_HAL::CANManager** _can_mgr)       //can总线
#endif
        :
        uartA(_uartA),
        uartB(_uartB),
        uartC(_uartC),
        uartD(_uartD),
        uartE(_uartE),
        uartF(_uartF),
        uartG(_uartG),
        i2c_mgr(_i2c_mgr),
        spi(_spi),
        analogin(_analogin),
        storage(_storage),
        console(_console),
        gpio(_gpio),
        rcin(_rcin),
        rcout(_rcout),
        scheduler(_scheduler),
        util(_util),
        opticalflow(_opticalflow)
    {
#if HAL_WITH_UAVCAN
        if (_can_mgr == nullptr)
        {
            for (uint8_t i = 0; i < MAX_NUMBER_OF_CAN_DRIVERS; i++)
                can_mgr[i] = nullptr;
        } else
        {
            for (uint8_t i = 0; i < MAX_NUMBER_OF_CAN_DRIVERS; i++)
                can_mgr[i] = _can_mgr[i];
        }
#endif

        AP_HAL::init();
    }
    //类中定义结构体
    struct Callbacks
	{
        virtual void setup() = 0;
        virtual void loop() = 0;
    };

    //回调构造函数
    struct FunCallbacks : public Callbacks
    {
        FunCallbacks(void (*setup_fun)(void), void (*loop_fun)(void));

        void setup() override { _setup(); }
        void loop() override { _loop(); }

    private:
        void (*_setup)(void);
        void (*_loop)(void);
    };
    //纯虚函数
    virtual void run(int argc, char * const argv[], Callbacks* callbacks) const = 0;

    AP_HAL::UARTDriver* uartA;  //定义指针对象
    AP_HAL::UARTDriver* uartB;  //定义指针对象
    AP_HAL::UARTDriver* uartC;
    AP_HAL::UARTDriver* uartD;
    AP_HAL::UARTDriver* uartE;
    AP_HAL::UARTDriver* uartF;
    AP_HAL::UARTDriver* uartG;
    AP_HAL::I2CDeviceManager* i2c_mgr;
    AP_HAL::SPIDeviceManager* spi;
    AP_HAL::AnalogIn*   analogin;
    AP_HAL::Storage*    storage;
    AP_HAL::UARTDriver* console;
    AP_HAL::GPIO*       gpio;
    AP_HAL::RCInput*    rcin;
    AP_HAL::RCOutput*   rcout;
    AP_HAL::Scheduler*  scheduler;
    AP_HAL::Util        *util;
    AP_HAL::OpticalFlow *opticalflow;
#if HAL_WITH_UAVCAN
    AP_HAL::CANManager* can_mgr[MAX_NUMBER_OF_CAN_DRIVERS];
#else
    AP_HAL::CANManager** can_mgr;
#endif
};



之前讲过Ardupilot为什么一套代码可以支持的不同的硬件,这里就不再说明。从这里可以看出Ardupilot的代码是非常规范的,为什么?代码采用C++语言,把C++用到了极致,所有的芯片底层板子类,都要按照父类的接口去实现,这样无论你增加什么样的硬件,你只要按照这种模式去写,就可以。



Ardupilot HAL学习_第2张图片
Ardupilot大致支持9种不同的硬件板子



第三 同一套操作系统如何实现支持不同的硬件平台



1.裸机代码



在这里插入图片描述
AVR is only supported on its separate branch



2. ChiBios操作系统



Ardupilot HAL学习_第3张图片


同一套操作系统如何实现支持不同的硬件平台???
注意:hwdef文件夹的定义
Ardupilot HAL学习_第4张图片

这里以自己的代码fmuv6为例进行配置,如果你想配置自己的板子,只需copy文件夹,然后修改对应于自己的硬件引脚就OK

# hw definition file for processing by chibios_hwdef.py
# for FMUv3 hardware (ie. for CUAV-PixHack-v5 and Pixhawk4)

# MCU class and specific type. It is a F765, which is the same as F767
# but without the TFT interface
MCU STM32F7xx STM32F767xx

# crystal frequency
OSCILLATOR_HZ 16000000

define STM32_LSECLK 32768U
define STM32_LSEDRV (3U << 3U)
define STM32_PLLSRC STM32_PLLSRC_HSE
define STM32_PLLM_VALUE 8
define STM32_PLLN_VALUE 216
define STM32_PLLP_VALUE 2
define STM32_PLLQ_VALUE 9

define CONFIG_HAL_BOARD_SUBTYPE HAL_BOARD_SUBTYPE_CHIBIOS_FMUV5
define HAL_CHIBIOS_ARCH_FMUV5 1

# board ID for firmware load
APJ_BOARD_ID 50

FLASH_RESERVE_START_KB 32

# board voltage
STM32_VDD 330U

# flash size
FLASH_SIZE_KB 2048

# order of UARTs (and USB)
UART_ORDER OTG1 USART1 USART2 USART3 UART4 USART6 UART7

# now we define the pins that USB is connected on
PA11 OTG_FS_DM OTG1
PA12 OTG_FS_DP OTG1

# these are the pins for SWD debugging with a STlinkv2 or black-magic probe
PA13 JTMS-SWDIO SWD
PA14 JTCK-SWCLK SWD

# SPI1 - internal sensors
PG11 SPI1_SCK SPI1
PA6 SPI1_MISO SPI1
PD7 SPI1_MOSI SPI1

# SPI2 - FRAM
PI1 SPI2_SCK SPI2
PI2 SPI2_MISO SPI2
PI3 SPI2_MOSI SPI2

# SPI4 - sensors2
PE2 SPI4_SCK SPI4
PE13 SPI4_MISO SPI4
PE6 SPI4_MOSI SPI4

# SPI5 - external1 (disabled to save DMA channels)
PF7 SPI5_SCK  SPI5
PF8 SPI5_MISO SPI5
PF9 SPI5_MOSI SPI5

# SPI6 - external2 (disabled to save DMA channels)
# PG13 SPI6_SCK SPI6
# PG12 SPI6_MISO SPI6
# PB5 SPI6_MOSI SPI6

# sensor CS
PF10 MS5611_CS CS
#PF2  ICM20689_CS CS SPEED_VERYLOW
PI4  ICM20689_CS CS SPEED_VERYLOW
PF3  ICM20602_CS CS SPEED_VERYLOW
PF4  BMI055_G_CS CS
PG10 BMI055_A_CS CS
PF5  FRAM_CS CS SPEED_VERYLOW

#SPI4片选引脚---PI8
PI8   SPL06_CS CS SPEED_VERYLOW
PI10  SPL06_001_CS CS SPEED_VERYLOW

# I2C buses

PB8 I2C1_SCL I2C1
PB9 I2C1_SDA I2C1

PF1 I2C2_SCL I2C2
PF0 I2C2_SDA I2C2

PH7 I2C3_SCL I2C3
PH8 I2C3_SDA I2C3

PF14 I2C4_SCL I2C4
PF15 I2C4_SDA I2C4

# order of I2C buses
I2C_ORDER I2C3 I2C1 I2C2 I2C4


# enable pins
PE3 VDD_3V3_SENSORS_EN OUTPUT HIGH

# start peripheral power off, then enable after init
# this prevents a problem with radios that use RTS for
# bootloader hold
PF12 nVDD_5V_HIPOWER_EN OUTPUT HIGH
PG4  nVDD_5V_PERIPH_EN OUTPUT HIGH

PG5  VDD_5V_RC_EN OUTPUT HIGH
PG6  VDD_5V_WIFI_EN OUTPUT HIGH
PG7  VDD_3V3_SD_CARD_EN OUTPUT HIGH

# drdy pins
PE7  DRDY8_NC INPUT
PB4  DRDY1_ICM20689 INPUT
PB14 DRDY2_BMI055_GYRO INPUT
PB15 DRDY3_BMI055_ACC INPUT
PC5  DRDY4_ICM20602 INPUT
PC13 DRDY5_BMI055_GYRO INPUT
PD10 DRDY6_BMI055_ACC INPUT
PD15 DRDY7_EXTERNAL1 INPUT

# UARTs

# USART2 is telem1
PD6 USART2_RX USART2
PD5 USART2_TX USART2
PD3 USART2_CTS USART2
PD4 USART2_RTS USART2

# USART1 is GPS1
PB7 USART1_RX USART1 NODMA
PB6 USART1_TX USART1 NODMA

# USART3 is telem2
PD9 USART3_RX USART3
PD8 USART3_TX USART3
PD11 USART3_CTS USART3
PD12 USART3_RTS USART3

# UART4 GPS2
PD0 UART4_RX UART4 NODMA
PD1 UART4_TX UART4 NODMA

# USART6 is telem3
PG9 USART6_RX USART6 NODMA
PG14 USART6_TX USART6 NODMA
PG15 USART6_CTS USART6
PG8 USART6_RTS USART6

# UART7 is debug
PF6 UART7_RX UART7 NODMA
PE8 UART7_TX UART7 NODMA

# UART8 is for IOMCU
PE0 UART8_RX UART8
PE1 UART8_TX UART8

# UART for IOMCU
IOMCU_UART UART8

# enable RTSCTS support
define AP_FEATURE_RTSCTS 1

# enable SBUS_OUT on IOMCU (if you have an IOMCU)
define AP_FEATURE_SBUS_OUT 1

# PWM AUX channels
PE14 TIM1_CH4 TIM1 PWM(1) GPIO(50)
PA10 TIM1_CH3 TIM1 PWM(2) GPIO(51)
PE11 TIM1_CH2 TIM1 PWM(3) GPIO(52)
PE9  TIM1_CH1 TIM1 PWM(4) GPIO(53)
PD13 TIM4_CH2 TIM4 PWM(5) GPIO(54)
PD14 TIM4_CH3 TIM4 PWM(6) GPIO(55)
# we need to disable DMA on the last 2 FMU channels
# as timer 12 doesn't have a TIMn_UP DMA option
PH6  TIM12_CH1 TIM12 PWM(7) GPIO(56) NODMA
PH9  TIM12_CH2 TIM12 PWM(8) GPIO(57) NODMA

define BOARD_PWM_COUNT_DEFAULT 8

# PWM output for buzzer
PE5 TIM9_CH1 TIM9 GPIO(77) ALARM

#PWM Control RGB_LED
PH10 TIM5_CH1 TIM5 PWM(9) GPIO(81)
PH11 TIM5_CH2 TIM5 PWM(10) GPIO(82)
PH12 TIM5_CH3 TIM5 PWM(11) GPIO(83)
#IMU control temp
PA7  TIM3_CH2 TIM3 PWM(12) GPIO(84)

# setup for the possibility of an IMU heater as the pixhawk2 cube has
# an IMU header
define HAL_HAVE_IMU_HEATER 1

# analog in
PA0 BATT_VOLTAGE_SENS ADC1 SCALE(1)
PA1 BATT_CURRENT_SENS ADC1 SCALE(1)

PA2 BATT2_VOLTAGE_SENS ADC1 SCALE(1)
PA3 BATT2_CURRENT_SENS ADC1 SCALE(1)

PC4 SPARE1_ADC1 ADC1 SCALE(1)
PA4 SPARE2_ADC1 ADC1 SCALE(1)

PB0 RSSI_IN ADC1 SCALE(1)

#PC3 HW_REV_SENS ADC1 SCALE(1)
#PC2 HW_VER_SENS ADC1 SCALE(1)

PC0 VDD_5V_SENS ADC1 SCALE(2)
PC1 SCALED_V3V3 ADC1 SCALE(2)

# setup scaling defaults for PixHackV5 power brick
define HAL_BATT_VOLT_SCALE 18.0
define HAL_BATT_CURR_SCALE 24.0
define HAL_BATT_VOLT_PIN 0
define HAL_BATT_CURR_PIN 1

# CAN bus
PI9  CAN1_RX CAN1
PH13 CAN1_TX CAN1

PB12 CAN2_RX CAN2
PB13 CAN2_TX CAN2

# GPIOs
#PA7 HEATER_EN OUTPUT LOW GPIO(80)
#define HAL_HEATER_GPIO_PIN 80

PG1 VDD_BRICK_VALID INPUT PULLUP
PG2 VDD_BRICK2_VALID INPUT PULLUP
PG3 VBUS INPUT
PF13 VDD_5V_HIPOWER_OC INPUT PULLUP
PE15 VDD_5V_PERIPH_OC INPUT PULLUP
PB10 nSPI5_RESET_EXTERNAL1 OUTPUT HIGH

# capture pins
#PA5 FMU_CAP1 INPUT  GPIO(58)
PB3 FMU_CAP2 INPUT  GPIO(59)
PB11 FMU_CAP3 INPUT GPIO(60)
PI0 FMU_SPARE_4 INPUT GPIO(61)

# SPI devices
SPIDEV icm20602       SPI1 DEVID1  ICM20602_CS  MODE3  2*MHZ  8*MHZ
SPIDEV bmi055_g       SPI1 DEVID2  BMI055_G_CS  MODE3 10*MHZ 10*MHZ
SPIDEV bmi055_a       SPI1 DEVID3  BMI055_A_CS  MODE3 10*MHZ 10*MHZ
SPIDEV ms5611         SPI1 DEVID4  MS5611_CS    MODE3 20*MHZ 20*MHZ

#SPIDEV icm20689      SPI5 DEVID1  ICM20689_CS  MODE3  2*MHZ  8*MHZ

SPIDEV  spl06         SPI4 DEVID1  SPL06_CS  MODE3  2*MHZ  8*MHZ


SPIDEV ramtron        SPI2 DEVID1  FRAM_CS      MODE3  8*MHZ  8*MHZ 




# microSD support
PC8 SDMMC_D0 SDMMC1
PC9 SDMMC_D1 SDMMC1
PC10 SDMMC_D2 SDMMC1
PC11 SDMMC_D3 SDMMC1
PC12 SDMMC_CK SDMMC1
PD2 SDMMC_CMD SDMMC1

# enable RAMTROM parameter storage
define HAL_STORAGE_SIZE 16384
define HAL_WITH_RAMTRON 1

# allow to have have a dedicated safety switch pin
define HAL_HAVE_SAFETY_SWITCH 1

define HAL_BARO_DEFAULT HAL_BARO_MS5611_SPI

define HAL_COMPASS_DEFAULT HAL_COMPASS_NONE
define HAL_COMPASS_AUTO_ROT_DEFAULT 2

DMA_PRIORITY SDMMC* UART8* ADC* SPI* TIM*

#define CH_DBG_ENABLE_ASSERTS TRUE
#define CH_DBG_ENABLE_CHECKS TRUE
#define CH_DBG_SYSTEM_STATE_CHECK TRUE
#define CH_DBG_ENABLE_STACK_CHECK TRUE

# define HAL_SPI_CHECK_CLOCK_FREQ 1

# enable FAT filesystem support (needs a microSD defined via SDMMC)
define HAL_OS_FATFS_IO 1

define HAL_BOARD_LOG_DIRECTORY "/APM/LOGS"
define HAL_BOARD_TERRAIN_DIRECTORY "/APM/TERRAIN"

ROMFS io_firmware.bin Tools/IO_Firmware/fmuv2_IO.bin



3. HAL_BOARD_EMPTY



Ardupilot HAL学习_第5张图片



4. AP_HAL_F4Light



Ardupilot HAL学习_第6张图片



5. AP_HAL_FLY MAPLE



FLYMAPLE is only supported on its separate [branch](https://github.com/ArduPilot/ardupilot/tree/master-AVR)


6. AP_HAL_Linux(支持linux系统的板)



Ardupilot HAL学习_第7张图片



7. AP_HAL_PX4(NUTTX操作系统)



Ardupilot HAL学习_第8张图片



8. AP_HAL_SITL(仿真SITL)



Ardupilot HAL学习_第9张图片



9. AP_HAL_VRBRAIN



Ardupilot HAL学习_第10张图片

你可能感兴趣的:(ardupilot学习)