目标检测—RCNN算法详解

RCNN可以说是利用深度学习进行目标检测的开山之作,论文发表在2014年的CVPR,是R-CNN系列算法的开山之作。

1、算法流程

RCNN算法分为4个步骤:

  • 一张图像生成1K~2K个候选区域
  • 对每个候选区域,使用深度网络提取特征
  • 特征送入每一类的SVM 分类器,判别是否属于该类
  • 使用回归器精细修正候选框位置
    目标检测—RCNN算法详解_第1张图片

2、候选区域生成

使用了Selective Search1方法从一张图像生成约2000-3000个候选区域。基本思路如下:

  • 使用一种过分割手段,将图像分割成小区域
  • 查看现有小区域,合并可能性最高的两个区域。重复直到整张图像合并成一个区域位置
  • 输出所有曾经存在过的区域,所谓候选区域

候选区域生成和后续步骤相对独立,实际可以使用任意算法进行。

3、合并规则

优先合并以下四种区域:

  • 颜色(颜色直方图)相近的
  • 纹理(梯度直方图)相近的
  • 合并后总面积小的
  • 合并后,总面积在其BBOX中所占比例大的

4、特征提取

预处理

使用深度网络提取特征之前,首先把候选区域归一化成同一尺寸227×227。
此处有一些细节可做变化:外扩的尺寸大小,形变时是否保持原比例,对框外区域直接截取还是补灰。会轻微影响性能。

预训练

网络结构
基本借鉴Hinton 2012年在Image Net上的分类网络2,略作简化3。

此网络提取的特征为4096维,之后送入一个4096->1000的全连接(fc)层进行分类。
学习率0.01。

训练数据
使用ILVCR 2012的全部数据进行训练,输入一张图片,输出1000维的类别标号。

调优训练

网络结构
同样使用上述网络,最后一层换成4096->21的全连接网络。
学习率0.001,每一个batch包含32个正样本(属于20类)和96个背景。

训练数据
使用PASCAL VOC 2007的训练集,输入一张图片,输出21维的类别标号,表示20类+背景。
考察一个候选框和当前图像上所有标定框重叠面积最大的一个。如果重叠比例大于0.5,则认为此候选框为此标定的类别;否则认为此候选框为背景。

类别判断

分类器
对每一类目标,使用一个线性SVM二类分类器进行判别。输入为深度网络输出的4096维特征,输出是否属于此类。
由于负样本很多,使用hard negative mining方法。
正样本
本类的真值标定框。
负样本
考察每一个候选框,如果和本类所有标定框的重叠都小于0.3,认定其为负样本

位置精修

目标检测问题的衡量标准是重叠面积:许多看似准确的检测结果,往往因为候选框不够准确,重叠面积很小。故需要一个位置精修步骤。
回归器
对每一类目标,使用一个线性脊回归器进行精修。正则项λ=10000λ=10000\lambda=10000。
输入为深度网络pool5层的4096维特征,输出为xy方向的缩放和平移。
训练样本
判定为本类的候选框中,和真值重叠面积大于0.6的候选框。

结果

论文发表的2014年,DPM已经进入瓶颈期,即使使用复杂的特征和结构得到的提升也十分有限。本文将深度学习引入检测领域,一举将PASCAL VOC上的检测率从35.1%提升到53.7%。
本文的前两个步骤(候选区域提取+特征提取)与待检测类别无关,可以在不同类之间共用。这两步在GPU上约需13秒。
同时检测多类时,需要倍增的只有后两步骤(判别+精修),都是简单的线性运算,速度很快。这两步对于100K类别只需10秒。

解决的问题

本文主要讲R-CNN(Regions with CNN features)这个算法,该算法是用来做object detection的经典算法,2014年提出。object detection的问题简单讲就是两方面:localization和recognition,即知道object在哪,以及这个object是什么。之前也有使用CNN算法做目标检测的,但是效率比较低,使用固定大小的区域逐步移动来当作输入进行神经网络的训练。

缺点

R-CNN流程较多,包括region proposal的选取,训练卷积神经网络(softmax classifier,log loss),训练SVM(hinge loss)和训练 regressor(squared loss),这使得训练时间非常长(84小时),占用磁盘空间也大。在训练卷积神经网络的过程中对每个region proposal都要计算卷积,这其中重复的太多不必要的计算,试想一张图像可以得到2000多个region proposal,大部分都有重叠,因此基于region proposal卷积的计算量太大。

你可能感兴趣的:(Deep,learning)