TensorFlow学习笔记-实现经典LeNet5模型

  LeNet5模型是Yann LeCun教授于1998年提出来的,它是第一个成功应用于数字识别问题的卷积神经网络。在MNIST数据中,它的准确率达到大约99.2%.
  通过TensorFlow实现的LeNet5模型,主要用到在说使用变量管理,可以增加代码可读性、降低代码冗余量,提高编程效率,更方便管理变量。我们将LeNet5模型分为三部分:
  1、网络定义部分:这部分是训练和验证都需要的网络结构。
  2、训练部分:用于神经网络训练MNIST训练集。
  3、验证部分:验证训练模型的准确率,在Tensorflow训练过程中,可以实时验证模型的正确率。
  将训练部分与验证部分分开的好处在于,训练部分可以持续输出训练好的模型,验证部分可以每隔一段时间验证模型的准确率;如果模型不好,则需要及时调整网络结构的参数。

一、 网络定义部分

import tensorflow as tf
INPUT_NODE = 784
OUTPUT_NODE = 10
IMAGE_SIZE = 28
NUM_CHANNEL = 1
NUM_LABEL = 10

# LAYER1
CONV1_DEEP = 32
CONV1_SIZE = 5

# LAYER2
CONV2_DEEP = 64
CONV2_SIZE = 5

# 全连接层
FC_SIZE = 512
# LAYER1_NODE = 500

def interence(input_tensor,train,regularizer):
    with tf.variable_scope('layer1-conv'):
        w = tf.get_variable('w', [CONV1_SIZE,CONV1_SIZE,NUM_CHANNEL,CONV1_DEEP],
                            initializer=tf.truncated_normal_initializer(stddev=0.1))
        b = tf.get_variable('b',shape=[CONV1_DEEP],initializer=tf.constant_initializer(0.0))
        # filter shape is :[filter_height, filter_width, in_channels, out_channels]
        # input tensor shape is:[batch, in_height, in_width, in_channels]
        # `strides = [1, stride, stride, 1]`.
        # return [batch, height, width, channels].
        conv1 = tf.nn.conv2d(input_tensor,w,strides=[1,1,1,1],padding='SAME')
        relu1 = tf.nn.relu(tf.nn.bias_add(conv1,b))

    with tf.variable_scope('layer2-pool'):
        pool1 = tf.nn.max_pool(relu1,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

    with tf.variable_scope('layer3-conv'):
        w = tf.get_variable('w', [CONV2_SIZE, CONV2_SIZE, CONV1_DEEP, CONV2_DEEP],
                            initializer=tf.truncated_normal_initializer(stddev=0.1))
        b = tf.get_variable('b',shape=[CONV2_DEEP],initializer=tf.constant_initializer(0.0))

        conv2 = tf.nn.conv2d(pool1, w, strides=[1, 1, 1, 1], padding='SAME')
        relu2 = tf.nn.relu(tf.nn.bias_add(conv2, b))

    with tf.variable_scope('layer4-pool'):
        # pool2 size is [batch_size,7,7,64]
        pool2 = tf.nn.max_pool(relu2,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')


    # 接下来是全连接层,需要将pool2转换为一维向量,作为后面的输入
    pool_shape = pool2.get_shape().as_list()
    nodes = pool_shape[1] * pool_shape[2] * pool_shape[3]
    reshaped = tf.reshape(pool2,[-1,nodes])
    # reshaped = tf.reshape(pool2,[BATCH_SIZE,-1])
    # print(reshaped.get_shape())
    with tf.variable_scope('layer5-fc1'):
        fc1_w = tf.get_variable('w',shape=[nodes,FC_SIZE],initializer=tf.truncated_normal_initializer(stddev=0.1))
        try:
            # 只有全连接层的权重需要加入正则化
            if regularizer != None:
                tf.add_to_collection('loss',regularizer(fc1_w))
        except:
            pass
        fc1_b = tf.get_variable('b',shape=[FC_SIZE],initializer=tf.constant_initializer(0.1))
        fc1 = tf.nn.relu(tf.matmul(reshaped,fc1_w) + fc1_b)
        # 使用Dropout随机将部分节点的输出改为0,为了防止过拟合的现象,从而使模型在测试数据中表现更好。
        # dropout一般只会在全连接层使用。
        if train:
            fc1 = tf.nn.dropout(fc1,0.5)

    with tf.variable_scope('layer6-fc2'):
        fc2_w = tf.get_variable('w', shape=[FC_SIZE, NUM_LABEL], initializer=tf.truncated_normal_initializer(stddev=0.1))
        try:
            if regularizer != None:
                tf.add_to_collection('loss', regularizer(fc2_w))
        except:
            pass
        fc2_b = tf.get_variable('b', shape=[NUM_LABEL], initializer=tf.constant_initializer(0.1))
        # 最后一层的输出,不需要加入激活函数
        logit = tf.matmul(fc1, fc2_w) + fc2_b

    return logit

二、训练部分

import os
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from mnist_cnn import mnist_interence
import numpy as np
BATCH_SIZE = 100

LEARNING_RATE_BASE = 0.8

LEARNING_RATE_DECAY = 0.99

REGULARIZATION_TATE = 0.0001

MOVING_AVERAGE_DECAY = 0.99

TRAIN_STEP = 300000

MODEL_PATH = 'model'
MODEL_NAME = 'model'

def train(mnist):
    x = tf.placeholder(tf.float32, shape=[None,
                                          mnist_interence.IMAGE_SIZE,
                                          mnist_interence.IMAGE_SIZE,
                                          mnist_interence.NUM_CHANNEL ], name='x-input')
    y_ = tf.placeholder(tf.float32, shape=[None, mnist_interence.OUTPUT_NODE], name='y-input')
    regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_TATE)
    y = mnist_interence.interence(x,True,regularizer)
    global_step = tf.Variable(0, trainable=False)

    variable_average = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
    variable_average_ops = variable_average.apply(tf.trainable_variables())

    cross_entroy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
    cross_entroy_mean = tf.reduce_mean(cross_entroy)

    loss = cross_entroy_mean + tf.add_n(tf.get_collection('loss'))

    learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE, global_step,
                                               mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY)
    train_step = tf.train.GradientDescentOptimizer(0.01).minimize(loss, global_step=global_step)
    train_op = tf.group(train_step, variable_average_ops)
    saver = tf.train.Saver()
    with tf.Session() as sess:
        tf.global_variables_initializer().run()
        for i in range(TRAIN_STEP):
            # 由于神经网络的输入大小为[BATCH_SIZE,IMAGE_SIZE,IMAGE_SIZE,CHANNEL],因此需要reshape输入。
            xs,ys = mnist.train.next_batch(BATCH_SIZE)
            reshape_xs = np.reshape(xs,(BATCH_SIZE, mnist_interence.IMAGE_SIZE,
                                        mnist_interence.IMAGE_SIZE,
                                        mnist_interence.NUM_CHANNEL))
            # print(type(xs))
            _,loss_value,step,learn_rate = sess.run([train_op,loss,global_step,learning_rate],feed_dict={x:reshape_xs,y_:ys})
            if i % 1000 == 0:
                print('After %d step, loss on train is %g,and learn rate is %g'%(step,loss_value,learn_rate))
                saver.save(sess,os.path.join(MODEL_PATH,MODEL_NAME),global_step=global_step)

def main():
    mnist = input_data.read_data_sets('../mni_data', one_hot=True)
    # ys = mnist.validation.labels
    # print(ys)
    train(mnist)
if __name__ == '__main__':
    main()

验证部分

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from mnist_cnn import mnist_interence
from mnist_cnn import mnist_train
EVAL_INTERVAL_SECS = 10
BATCH_SIZE = 100
import time
import numpy as np
def evaluate(mnist):
    with tf.Graph().as_default():
        x = tf.placeholder(tf.float32, shape=[None,
                                              mnist_interence.IMAGE_SIZE,
                                              mnist_interence.IMAGE_SIZE,
                                              mnist_interence.NUM_CHANNEL], name='x-input')
        y_ = tf.placeholder(tf.float32, shape=[None,mnist_interence.OUTPUT_NODE], name='y-input')

        xs, ys = mnist.validation.images, mnist.validation.labels
        reshape_xs = np.reshape(xs, (-1, mnist_interence.IMAGE_SIZE,
                                     mnist_interence.IMAGE_SIZE,
                                     mnist_interence.NUM_CHANNEL))
        print(mnist.validation.labels[0])
        val_feed = {x: reshape_xs, y_: mnist.validation.labels}
        y = mnist_interence.interence(x,False,None)
        correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        variable_average = tf.train.ExponentialMovingAverage(mnist_train.MOVING_AVERAGE_DECAY)

        val_to_restore = variable_average.variables_to_restore()

        saver = tf.train.Saver(val_to_restore)
        while True:
            with tf.Session() as sess:
                ckpt = tf.train.get_checkpoint_state(mnist_train.MODEL_PATH)
                if ckpt and ckpt.model_checkpoint_path:
                    saver.restore(sess,ckpt.model_checkpoint_path)
                    global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
                    accuracy_score = sess.run(accuracy,feed_dict=val_feed)
                    print('After %s train ,the accuracy is %g'%(global_step,accuracy_score))
                else:
                    print('No Checkpoint file find')
                    # continue
            time.sleep(EVAL_INTERVAL_SECS)

def main():
    mnist = input_data.read_data_sets('../mni_data',one_hot=True)
    evaluate(mnist)

if __name__ == '__main__':
    main()

  最后,在MNIST数据集中的准确率大约在99.4%左右

你可能感兴趣的:(TensorFlow)