在生产环境中基于PyTorch的C++API运行模型-以图像分类为例

文章目录

  • 背景
  • TorchScript简介
    • PyTorch中如何创建基本模型
    • TorchScript
      • **追踪(tracing)**
    • 使用 Scripting to Convert Modules
      • 混合脚本(Scripting)和追踪(Tracing)
    • 保存和加载TorchScript模型
  • 在C++中加载TorchScript模型
    • Step 1:将PyTorch模型转换为Torch Script
      • 通过Tracing
      • 通过Annotation(注释)
    • Step 2:将Script Module序列化到文件中
    • Step 3:在C++中加载Torch Script模块
      • 最简化的C++应用
      • 构建依赖和创建
    • Step 4:在C++中执行Script Module
  • 图像分类实例
    • 环境准备
    • C++中加载模型
      • Step 1:将PyTorch模型转为Torch Script
      • Step 2:在C++中调用Torch Script
  • 参考资料

背景

生产环境多数是使用java或者C++,本文将介绍在C++中加载PyTorch模型,执行生产环境下的推理。因此,本文的重点在于C++中如何加载模型,并进行推理预测操作,而不是模型的设计和训练。
可以查看官方提供的说明 https://pytorch.org/tutorials/advanced/cpp_export.html#

TorchScript简介

TorchScript是PyTorch模型的一种中间形式,可以在高性能环境(例如C ++)中运行。

PyTorch中如何创建基本模型

PyTorch中创建一个模块包含:
(1)构造函数,为模块调用做准备
(2)参数和子模块,由构造函数初始化,可以由模块在调用期间使用
(3)forward函数,调用模块时运行的代码

一个简单示例如下:

class MyCell(torch.nn.Module):
    def __init__(self):
        super(MyCell, self).__init__()

    def forward(self, x, h):
        new_h = torch.tanh(x + h)
        return new_h, new_h

my_cell = MyCell()
x = torch.rand(3, 4)
h = torch.rand(3, 4)
print(my_cell(x, h))

输出结果:

(tensor([[0.6454, 0.7223, 0.8207, 0.1638],
        [0.6929, 0.7719, 0.9481, 0.6845],
        [0.7689, 0.8348, 0.8925, 0.3200]]), tensor([[0.6454, 0.7223, 0.8207, 0.1638],
        [0.6929, 0.7719, 0.9481, 0.6845],
        [0.7689, 0.8348, 0.8925, 0.3200]]))

以上示例,我们基于torch.nn.Module创建了一个类MyCell,并定义了构造函数,这里的构造函数仅调用了super函数。
super()函数是用于调用父类(超类)的一个方法。super是用来解决多重继承问题的,直接用类名调用父类方法在使用单继承的时候没问题,但是如果使用多继承,会涉及到查找顺序、重复调用等种种问题。同时,我们还定义了forward函数,这里的forward函数输入是2个参数,返回2个结果。该forward函数的实际内容并不是很重要,但是它是一种伪的RNN单元,即该函数真实场景应用于循环。

我们进一步改动上述MyCell类,在原有基础上增加一个self.linear成员属性(是一个函数),并在forward函数中调用该成员。torch.nn.Linear是PyTorch中的一个标准模块,如此便完成了模块的嵌套组合。

class MyCell(torch.nn.Module):
    def __init__(self):
        super(MyCell, self).__init__()
        self.linear = torch.nn.Linear(4, 4)

    def forward(self, x, h):
        new_h = torch.tanh(self.linear(x) + h)
        return new_h, new_h

my_cell = MyCell()
x = torch.rand(3, 4)
h = torch.rand(3, 4)
print(my_cell)
print(my_cell(x, h))

输出结果:

MyCell(
  (linear): Linear(in_features=4, out_features=4, bias=True)
)
(tensor([[ 0.6286, -0.1987,  0.2962,  0.6099],
        [ 0.8631, -0.2569,  0.1799,  0.6778],
        [ 0.8491,  0.5000,  0.3010,  0.1332]], grad_fn=), tensor([[ 0.6286, -0.1987,  0.2962,  0.6099],
        [ 0.8631, -0.2569,  0.1799,  0.6778],
        [ 0.8491,  0.5000,  0.3010,  0.1332]], grad_fn=))

当打印模块的时候,输出为模块的子类层次结构。比如上述打印的mycell的结果是linear子类及其参数。
通过这种方式组合模块,就可以用可复用的组件轻松地创建模型。
此外,从输出结果可以看出还有grad_fn。这是PyTorch自动微分求导给出的信息,称为autograd。简而言之,该系统允许我们通过潜在的复杂程序来计算导数。该设计为模型创建提供了极大的灵活性。

我们用例子进一步说明模型构建的灵活性。在上述基础上新增MyDecisionGate,该模块中用到形如循环或if语句的控制流。

class MyDecisionGate(torch.nn.Module):
  def forward(self, x):
    if x.sum() > 0:
      return x
    else:
      return -x

class MyCell(torch.nn.Module):
    def __init__(self):
        super(MyCell, self).__init__()
        self.dg = MyDecisionGate()
        self.linear = torch.nn.Linear(4, 4)

    def forward(self, x, h):
        new_h = torch.tanh(self.dg(self.linear(x)) + h)
        return new_h, new_h

my_cell = MyCell()
x = torch.rand(3, 4)
h = torch.rand(3, 4)
print(my_cell)
print(my_cell(x, h))

输出结果:

MyCell(
  (dg): MyDecisionGate()
  (linear): Linear(in_features=4, out_features=4, bias=True)
)
(tensor([[ 0.6055,  0.5525,  0.8768,  0.6291],
        [ 0.6550,  0.7678,  0.7121, -0.0692],
        [ 0.1305,  0.2356,  0.7683,  0.4723]], grad_fn=), tensor([[ 0.6055,  0.5525,  0.8768,  0.6291],
        [ 0.6550,  0.7678,  0.7121, -0.0692],
        [ 0.1305,  0.2356,  0.7683,  0.4723]], grad_fn=))

TorchScript

以上述运行过的示例为例,看看如何应用TorchScript。

追踪(tracing)

简而言之,鉴于原生PyTorch具有灵活和动态的特性,TorchScript也提供了捕获模型定义的工具。其中一个核心的概念就是模型追踪(tracing)。

class MyCell(torch.nn.Module):
    def __init__(self):
        super(MyCell, self).__init__()
        self.linear = torch.nn.Linear(4, 4)

    def forward(self, x, h):
        new_h = torch.tanh(self.linear(x) + h)
        return new_h, new_h

my_cell = MyCell()
x, h = torch.rand(3, 4), torch.rand(3, 4)
traced_cell = torch.jit.trace(my_cell, (x, h))
print(traced_cell)
traced_cell(x, h)

运行结果:

TracedModule[MyCell](
  (linear): TracedModule[Linear]()
)

与此前一样,实例化MyCell,但是这次,使用torch.jit.trace方法调用Module,然后传入了网络的示例输入。这到底是做什么的?它已调用Module,记录了Module运行时发生的操作,并创建了torch.jit.ScriptModule实例(TracedModule的实例)。TorchScript将其定义记录在中间表示(或IR)中,在深度学习中通常称为graph。我们可以通过访问.graph属性来查看graph:

print(traced_cell.graph)

运行结果:

graph(%self : ClassType,
      %input : Float(3, 4),
      %h : Float(3, 4)):
  %1 : ClassType = prim::GetAttr[name="linear"](%self)
  %weight : Tensor = prim::GetAttr[name="weight"](%1)
  %bias : Tensor = prim::GetAttr[name="bias"](%1)
  %6 : Float(4!, 4!) = aten::t(%weight), scope: MyCell/Linear[linear] # /home/data1/software/Anaconda3/lib/python3.7/site-packages/torch/nn/functional.py:1369:0
  %7 : int = prim::Constant[value=1](), scope: MyCell/Linear[linear] # /home/data1/software/Anaconda3/lib/python3.7/site-packages/torch/nn/functional.py:1369:0
  %8 : int = prim::Constant[value=1](), scope: MyCell/Linear[linear] # /home/data1/software/Anaconda3/lib/python3.7/site-packages/torch/nn/functional.py:1369:0
  %9 : Float(3, 4) = aten::addmm(%bias, %input, %6, %7, %8), scope: MyCell/Linear[linear] # /home/data1/software/Anaconda3/lib/python3.7/site-packages/torch/nn/functional.py:1369:0
  %10 : int = prim::Constant[value=1](), scope: MyCell # test_pytorch.py:9:0
  %11 : Float(3, 4) = aten::add(%9, %h, %10), scope: MyCell # test_pytorch.py:9:0
  %12 : Float(3, 4) = aten::tanh(%11), scope: MyCell # test_pytorch.py:9:0
  %13 : (Float(3, 4), Float(3, 4)) = prim::TupleConstruct(%12, %12)
  return (%13)

但是,这是一个非常低级的表示形式,图中包含的大多数信息对最终用户没有用。相反,我们可以使用.code属性为代码提供Python语法的解释:

print(traced_cell.code)

输出结果:

def forward(self,
    input: Tensor,
    h: Tensor) -> Tuple[Tensor, Tensor]:
  _0 = self.linear
  weight = _0.weight
  bias = _0.bias
  _1 = torch.addmm(bias, input, torch.t(weight), beta=1, alpha=1)
  _2 = torch.tanh(torch.add(_1, h, alpha=1))
  return (_2, _2)

那么为什么我们要做所有这些呢?有以下几个原因:

  1. TorchScript代码可以在其自己的解释器中调用,该解释器基本上是受限制的Python解释器。该解释器不获取全局解释器锁,因此可以在同一实例上同时处理许多请求。
  2. 这种格式使我们可以将整个模型保存到磁盘上,并可以在另一个环境中加载,例如在以非Python语言编写的服务中。
  3. TorchScript为我们提供了一种表示形式,通过TorchScript我们可以对代码进行编译器优化以提供更有效的执行。
  4. 通过TorchScript可以与许多后端/设备运行时进行接口,这些运行时比单个操作需要更广泛的程序视图。

可以看到调用traced_cell产生的结果与直接执行Python模块结果是相同的:
运行:

print(my_cell(x, h))
print(traced_cell(x, h))

运行结果:

(tensor([[0.6964, 0.5208, 0.7205, 0.6677],
        [0.6465, 0.3342, 0.7431, 0.5376],
        [0.5603, 0.1212, 0.9433, 0.8053]], grad_fn=), tensor([[0.6964, 0.5208, 0.7205, 0.6677],
        [0.6465, 0.3342, 0.7431, 0.5376],
        [0.5603, 0.1212, 0.9433, 0.8053]], grad_fn=))
(tensor([[0.6964, 0.5208, 0.7205, 0.6677],
        [0.6465, 0.3342, 0.7431, 0.5376],
        [0.5603, 0.1212, 0.9433, 0.8053]],
       grad_fn=), tensor([[0.6964, 0.5208, 0.7205, 0.6677],
        [0.6465, 0.3342, 0.7431, 0.5376],
        [0.5603, 0.1212, 0.9433, 0.8053]],
       grad_fn=))

使用 Scripting to Convert Modules

我们使用模块的第二个版本,即traced_cell(x, h)是有原因的,而不是使用带有控制流的子模块的一个版本。让我们以下述示例来阐述其背后的原因。

class MyDecisionGate(torch.nn.Module):
  def forward(self, x):
    if x.sum() > 0:
      return x
    else:
      return -x

class MyCell(torch.nn.Module):
    def __init__(self, dg):
        super(MyCell, self).__init__()
        self.dg = dg
        self.linear = torch.nn.Linear(4, 4)

    def forward(self, x, h):
        new_h = torch.tanh(self.dg(self.linear(x)) + h)
        return new_h, new_h

my_cell = MyCell(MyDecisionGate())
x, h = torch.rand(3, 4), torch.rand(3, 4)
traced_cell = torch.jit.trace(my_cell, (x, h))
print(traced_cell.code)

输出结果:

test_pytorch.py:4: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  if x.sum() > 0:
def forward(self,
    input: Tensor,
    h: Tensor) -> Tuple[Tensor, Tensor]:
  _0 = self.linear
  weight = _0.weight
  bias = _0.bias
  x = torch.addmm(bias, input, torch.t(weight), beta=1, alpha=1)
  _1 = torch.tanh(torch.add(torch.neg(x), h, alpha=1))
  return (_1, _1)

根据.code的输出,可以发现if-else的分支已经杳无踪迹!为什么?Tracing完全按照我们所说的去做:运行代码,记录发生的操作,并构造一个可以做到这一点的ScriptModule。不幸的是,在这个运行过程,诸如控制流之类的信息被抹去了。
那么如何在TorchScript中如实地表示此模块?PyTorch提供了一个脚本编译器,它可以直接分Python源代码以将其转换为TorchScript。对上述的MyDecisionGate使用脚本编译器进行转换:

scripted_gate = torch.jit.script(MyDecisionGate())  # 看这里

my_cell = MyCell(scripted_gate)
traced_cell = torch.jit.script(my_cell)  # 看这里
print(traced_cell.code)

运行结果:

def forward(self,
    x: Tensor,
    h: Tensor) -> Tuple[Tensor, Tensor]:
  _0 = self.linear
  _1 = _0.weight
  _2 = _0.bias
  if torch.eq(torch.dim(x), 2):
    _3 = torch.__isnot__(_2, None)
  else:
    _3 = False
  if _3:
    bias = ops.prim.unchecked_unwrap_optional(_2)
    ret = torch.addmm(bias, x, torch.t(_1), beta=1, alpha=1)
  else:
    output = torch.matmul(x, torch.t(_1))
    if torch.__isnot__(_2, None):
      bias0 = ops.prim.unchecked_unwrap_optional(_2)
      output0 = torch.add_(output, bias0, alpha=1)
    else:
      output0 = output
    ret = output0
  _4 = torch.gt(torch.sum(ret, dtype=None), 0)
  if bool(_4):
    _5 = ret
  else:
    _5 = torch.neg(ret)
  new_h = torch.tanh(torch.add(_5, h, alpha=1))
  return (new_h, new_h)

现在,已经可以如实地捕获了在TorchScript中程序的行为。现在尝试运行该程序:

# New inputs
x, h = torch.rand(3, 4), torch.rand(3, 4)
print(traced_cell(x, h))

运行结果:

(tensor([[ 0.3430, -0.3471,  0.7990,  0.8313],
        [-0.4042, -0.3058,  0.7758,  0.8332],
        [-0.3002, -0.3926,  0.8468,  0.7715]],
       grad_fn=), tensor([[ 0.3430, -0.3471,  0.7990,  0.8313],
        [-0.4042, -0.3058,  0.7758,  0.8332],
        [-0.3002, -0.3926,  0.8468,  0.7715]],
       grad_fn=))

注意,本文实验的PyTorch版本是1.2.0+cu92

混合脚本(Scripting)和追踪(Tracing)

在某些情况下,只需追踪的的结果而不需要脚本,例如,模块具有许多条件分支,这些分支我们并不希望展现在TorchScript中。在这种情况下,脚本可以与用以下方法追踪:torch.jit.scripttorch.jit.script只会追踪方法内的脚本,不会展示方法外的脚本情况。

基于上述示例修改如下:

class MyDecisionGate(torch.nn.Module):
  def forward(self, x):
    if x.sum() > 0:
      return x
    else:
      return -x

class MyCell(torch.nn.Module):
    def __init__(self, dg):
        super(MyCell, self).__init__()
        self.dg = dg
        self.linear = torch.nn.Linear(4, 4)

    def forward(self, x, h):
        new_h = torch.tanh(self.dg(self.linear(x)) + h)
        return new_h, new_h

scripted_gate = torch.jit.script(MyDecisionGate())
x, h = torch.rand(3, 4), torch.rand(3, 4)

class MyRNNLoop(torch.nn.Module):
    def __init__(self):
        super(MyRNNLoop, self).__init__()
        self.cell = torch.jit.trace(MyCell(scripted_gate), (x, h))  # 看这里,混合使用

    def forward(self, xs):
        h, y = torch.zeros(3, 4), torch.zeros(3, 4)
        for i in range(xs.size(0)):
            y, h = self.cell(xs[i], h)
        return y, h

rnn_loop = torch.jit.script(MyRNNLoop())
print(rnn_loop.code)

运行结果:

def forward(self,
    xs: Tensor) -> Tuple[Tensor, Tensor]:
  h = torch.zeros([3, 4], dtype=None, layout=None, device=None, pin_memory=None)
  y = torch.zeros([3, 4], dtype=None, layout=None, device=None, pin_memory=None)
  y0, h0 = y, h
  for i in range(torch.size(xs, 0)):
    _0 = self.cell
    _1 = torch.select(xs, 0, i)
    _2 = _0.linear
    weight = _2.weight
    bias = _2.bias
    _3 = torch.addmm(bias, _1, torch.t(weight), beta=1, alpha=1)
    _4 = torch.gt(torch.sum(_3, dtype=None), 0)
    if bool(_4):
      _5 = _3
    else:
      _5 = torch.neg(_3)
    _6 = torch.tanh(torch.add(_5, h0, alpha=1))
    y0, h0 = _6, _6
  return (y0, h0)

在上面的基础上再包装一层WrapRNN类,具体如下:

class MyDecisionGate(torch.nn.Module):
  def forward(self, x):
    if x.sum() > 0:
      return x
    else:
      return -x

class MyCell(torch.nn.Module):
    def __init__(self, dg):
        super(MyCell, self).__init__()
        self.dg = dg
        self.linear = torch.nn.Linear(4, 4)

    def forward(self, x, h):
        new_h = torch.tanh(self.dg(self.linear(x)) + h)
        return new_h, new_h

scripted_gate = torch.jit.script(MyDecisionGate())
x, h = torch.rand(3, 4), torch.rand(3, 4)

class MyRNNLoop(torch.nn.Module):
    def __init__(self):
        super(MyRNNLoop, self).__init__()
        self.cell = torch.jit.trace(MyCell(scripted_gate), (x, h))  # 看这里,混合使用

    def forward(self, xs):
        h, y = torch.zeros(3, 4), torch.zeros(3, 4)
        for i in range(xs.size(0)):
            y, h = self.cell(xs[i], h)
        return y, h

class WrapRNN(torch.nn.Module):
  def __init__(self):
    super(WrapRNN, self).__init__()
    self.loop = torch.jit.script(MyRNNLoop())

  def forward(self, xs):
    y, h = self.loop(xs)
    return torch.relu(y)

traced = torch.jit.trace(WrapRNN(), (torch.rand(10, 3, 4)))
print(traced.code)

运行输出结果:

def forward(self,
    argument_1: Tensor) -> Tensor:
  _0 = self.loop
  h = torch.zeros([3, 4], dtype=None, layout=None, device=None, pin_memory=None)
  h0 = h
  for i in range(torch.size(argument_1, 0)):
    _1 = _0.cell
    _2 = torch.select(argument_1, 0, i)
    _3 = _1.linear
    weight = _3.weight
    bias = _3.bias
    _4 = torch.addmm(bias, _2, torch.t(weight), beta=1, alpha=1)
    _5 = torch.gt(torch.sum(_4, dtype=None), 0)
    if bool(_5):
      _6 = _4
    else:
      _6 = torch.neg(_4)
    h0 = torch.tanh(torch.add(_6, h0, alpha=1))
  return torch.relu(h0)

保存和加载TorchScript模型

PyTorch提供API,以存档格式将TorchScript模块保存到磁盘或从磁盘加载TorchScript模块。这种格式包括代码,参数,属性和调试信息,这意味着归档文件是模型的独立表示形式,可以在完全独立的过程中加载。
对上述示例中的RNN模型进行保存并加载如下:

traced.save('wrapped_rnn.zip')

loaded = torch.jit.load('wrapped_rnn.zip')

print(loaded)
print(loaded.code)

运行结果:

ScriptModule(
  (loop): ScriptModule(
    (cell): ScriptModule(
      (dg): ScriptModule()
      (linear): ScriptModule()
    )
  )
)
def forward(self,
    argument_1: Tensor) -> Tensor:
  _0 = self.loop
  h = torch.zeros([3, 4], dtype=None, layout=None, device=None, pin_memory=None)
  h0 = h
  for i in range(torch.size(argument_1, 0)):
    _1 = _0.cell
    _2 = torch.select(argument_1, 0, i)
    _3 = _1.linear
    weight = _3.weight
    bias = _3.bias
    _4 = torch.addmm(bias, _2, torch.t(weight), beta=1, alpha=1)
    _5 = torch.gt(torch.sum(_4, dtype=None), 0)
    if bool(_5):
      _6 = _4
    else:
      _6 = torch.neg(_4)
    h0 = torch.tanh(torch.add(_6, h0, alpha=1))
  return torch.relu(h0)

从上述结果可以看出,序列化保留了模块层次结构和代码。也可以将模型加载到C ++中以实现不依赖Python的执行。下面我们就介绍在C++中如何加载模型并进行推理操作。

在C++中加载TorchScript模型

Step 1:将PyTorch模型转换为Torch Script

将PyTorch模型从Python转到C++需要通过Torch Script实现。Torch Script 是PyTorch模型的一种表示,它可以被Torch Script 编译器理解、编译和序列化。 如果用普通的“eager”API编写PyTorch模型,则必须首先将模型转换为 Torch Script。

前面章节已经介绍过2种将PyTorch模型转换为Torch Script 的方法。第一种是追踪(tracing),通过实例输入对模型结构做一次评估,并记录这些输入通过模型的流动状态。该方法适用于模型有限使用控制流的情况。第二种方法是在模型中添加明确的注释,使得Torch Script 编译器可以直接解析和编译模型代码。更详细资料可以参考Torch Script reference

通过Tracing

要通过追踪方式将PyTorch模型转换为Torch Script,必须将带有样例输入的模型实例输入到torch.jit.trace函数。这将产生一个torch.jit.ScriptModule对象,该对象在forward 方法中嵌入模型评估的追踪。
具体使用示例如下:

import torch
import torchvision

# An instance of your model.
model = torchvision.models.resnet18()

# An example input you would normally provide to your model's forward() method.
example = torch.rand(1, 3, 224, 224)

# Use torch.jit.trace to generate a torch.jit.ScriptModule via tracing.
traced_script_module = torch.jit.trace(model, example)

被追踪的ScriptModule对象,现在可以被视为常规的PyTorch模块。

output = traced_script_module(torch.ones(1, 3, 224, 224))
print(output[0, :5])

输出结果:

tensor([0.7741, 0.0539, 0.6656, 0.7301, 0.2207], grad_fn=)

通过Annotation(注释)

在某些情况下,例如,如果模型采用控制流的特定形式,那么直接以Torch Script 写出模型,并相应地标注模型也许是更好的选择。以下述Pytorch模型为例展开说明:

import torch

class MyModule(torch.nn.Module):
    def __init__(self, N, M):
        super(MyModule, self).__init__()
        self.weight = torch.nn.Parameter(torch.rand(N, M))

    def forward(self, input):
        if input.sum() > 0:
          output = self.weight.mv(input)
        else:
          output = self.weight + input
        return output

因为这个模块中的forward方法使用依赖于输入的控制流依,这种模块不适合于追踪方法。相反,可以将其转换为ScriptModule。为了将模块转换为ScriptModule,需要用torch.jit.script编译模块:

class MyModule(torch.nn.Module):
    def __init__(self, N, M):
        super(MyModule, self).__init__()
        self.weight = torch.nn.Parameter(torch.rand(N, M))

    def forward(self, input):
        if input.sum() > 0:
          output = self.weight.mv(input)
        else:
          output = self.weight + input
        return output

my_module = MyModule(10,20)
sm = torch.jit.script(my_module)

另外,对于nn.Module中不需要的方法(因为TorchScript对于有些python特性目前是不支持的),可以用@torch.jit.ignore将其去除。

Step 2:将Script Module序列化到文件中

对于获取到的ScriptModule对象(不管是用tracing方法还是annotation方法得到的),可以将其序列化为一个文件,以便后续在其他环境(如C++)中使用。具体序列化方式如下:

traced_script_module.save("traced_resnet_model.pt")

如果同时想要序列化模块my_module,可以使用my_module.save("my_module_model.pt")

Step 3:在C++中加载Torch Script模块

在C++中加载序列化的PyTorch模型需要用到PyTorch C++ API,即LibTorch库。LibTorch中有共享库、头文件和CMake构建配置文件。

最简化的C++应用

example-app.cpp的内容如下:

#include  // One-stop header.

#include 
#include 

int main(int argc, const char* argv[]) {
  if (argc != 2) {
    std::cerr << "usage: example-app \n";
    return -1;
  }


  torch::jit::script::Module module;
  try {
    // Deserialize the ScriptModule from a file using torch::jit::load().
    module = torch::jit::load(argv[1]);
  }
  catch (const c10::Error& e) {
    std::cerr << "error loading the model\n";
    return -1;
  }

  std::cout << "ok\n";
}

其中头文件包括了运行示例所必需的LibTorch库中所有的相关依赖。上述示例接收序列化的ScriptModule文件,并通过torch::jit::load()加载序列化的文件,返回结果是torch::jit::script::Module对象。

构建依赖和创建

上述代码对应的CMakeLists.txt内容如下:

cmake_minimum_required(VERSION 3.0 FATAL_ERROR)
project(custom_ops)

find_package(Torch REQUIRED)

add_executable(example-app example-app.cpp)
target_link_libraries(example-app "${TORCH_LIBRARIES}")
set_property(TARGET example-app PROPERTY CXX_STANDARD 11)

从官方下载libtorch,并解压:
在生产环境中基于PyTorch的C++API运行模型-以图像分类为例_第1张图片

其中lib目录包含链接时所需的共享库;include包含程序中用到的头文件;share目录包含必要的CMake配置,以方便上面find_package(Torch)命令的使用。

最后还需要构建应用程序。假设目录布局如下:

example-app/
  CMakeLists.txt
  example-app.cpp

可以运行下面的命令来从example-app/文件夹内构建应用程序:

mkdir build
cd build
cmake -DCMAKE_PREFIX_PATH=/home/data1/devtools/libtorch/ ..
make

这里DCMAKE_PREFIX_PATH值为下载libtorch后解包的位置。
编译后,运行方式如下:

./example-app /traced_resnet_model.pt

Step 4:在C++中执行Script Module

上述的介绍已经能够实现在C++中加载序列化的ResNet18,现在需要做的是运行模型进行推理。具体如下:

// Create a vector of inputs.
std::vector inputs;
inputs.push_back(torch::ones({1, 3, 224, 224}));

// Execute the model and turn its output into a tensor.
at::Tensor output = module.forward(inputs).toTensor();
std::cout << output.slice(/*dim=*/1, /*start=*/0, /*end=*/5) << '\n';

上述代码的前2行是模型的输入,再调用script::Module中的forward方法,返回结果的类型是IValue,需要进一步通过toTensor()转为tensor。

注意:如果想把模型以GPU运行,则只需对模型处理如下:model.to(at::kCUDA);。同时要确保模型的输入也在CUDA内存中,可以用以下方式实现:tensor.to(at::kCUDA),则会返回一个新的位于CUDA内存中的tensor。

图像分类实例

环境准备

需要预先安装cmake、opencv、 PyTroch 1.2。 在opencv安装过程可能会出现一些诸如gcc版本(本文使用的gcc5.2)过低等环境安装问题,这里就展开说明了。

C++中加载模型

以使用resnet18模型进行图像分类为例。

Step 1:将PyTorch模型转为Torch Script

运行如下脚本:

import torch
import torchvision
from torchvision import transforms
from PIL import Image
from time import time
import numpy as np

# An instance of your model.
model = torchvision.models.resnet18(pretrained=True)
model.eval()

# An example input you would normally provide to your model's forward() method.
example = torch.rand(1, 3, 224, 224)

# Use torch.jit.trace to generate a torch.jit.ScriptModule via tracing.
traced_script_module = torch.jit.trace(model, example)
traced_script_module.save("model.pt")

# evalute time
batch = torch.rand(64, 3, 224, 224)
start = time()
output = traced_script_module(batch)
stop = time()
print(str(stop-start) + "s")

# read image
image = Image.open('dog.png').convert('RGB')
default_transform = transforms.Compose([
        transforms.Resize([224, 224]),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])
      ])
image = default_transform(image)

# forward
output = traced_script_module(image.unsqueeze(0))
print(output[0, :10])

# print top-5 predicted labels
labels = np.loadtxt('synset_words.txt', dtype=str, delimiter='\n')

data_out = output[0].data.numpy()
sorted_idxs = np.argsort(-data_out)

for i,idx in enumerate(sorted_idxs[:5]):
  print('top-%d label: %s, score: %f' % (i, labels[idx], data_out[idx]))

获得model.pt

Step 2:在C++中调用Torch Script

(1)需要先下载LibTorch并解包,在make编译时候需要指定该lib的路径。
(2)利用cmake工具对业务代码,即使用Torch Script的代码进行编译

mkdir build
cd build
cmake -DCMAKE_PREFIX_PATH=/home/data1/devtools/libtorch ..
make

(3)运行

./example-app ../model.pt ../dog.png ../synset_words.txt

打印结果:

top-1 label:n02108422 bull mastiff
its score:17.9795
top-2 label:n02093428 American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier
its score:13.3846
top-3 label:n02109047 Great Dane
its score:12.8465
top-4 label:n02093256 Staffordshire bullterrier, Staffordshire bull terrier
its score:12.1885
top-5 label:n02110958 pug, pug-dog
its score:11.9975

从打印结果可以看出,预测结果为n02108422 bull mastiff,即牛头獒。
先看下输入图像:
在生产环境中基于PyTorch的C++API运行模型-以图像分类为例_第2张图片
再网络搜索bull mastiff确认:
在生产环境中基于PyTorch的C++API运行模型-以图像分类为例_第3张图片

附上完整代码:

#include 
#include  
//#include  
#include 
#include 
#include 
#include   

#include 
#include 
#include 
#include 

/* main */
int main(int argc, const char* argv[]) {
  if (argc < 4) {
    std::cerr << "usage: example-app  "
      << "  \n";
    return -1;
  }

  // Deserialize the ScriptModule from a file using torch::jit::load().
  //std::shared_ptr module = torch::jit::load(argv[1]);
  torch::jit::script::Module module = torch::jit::load(argv[1]);  
  std::cout << "load model ok\n";

  // Create a vector of inputs.
  std::vector inputs;
  inputs.push_back(torch::rand({64, 3, 224, 224}));

  // evalute time
  double t = (double)cv::getTickCount();
  module.forward(inputs).toTensor();
  t = (double)cv::getTickCount() - t;
  printf("execution time = %gs\n", t / cv::getTickFrequency());
  inputs.pop_back();

  // load image with opencv and transform
  cv::Mat image;
  image = cv::imread(argv[2], 1);
  cv::cvtColor(image, image, CV_BGR2RGB);
  cv::Mat img_float;
  image.convertTo(img_float, CV_32F, 1.0/255);
  cv::resize(img_float, img_float, cv::Size(224, 224));
  //std::cout << img_float.at(56,34)[1] << std::endl;
  //auto img_tensor = torch::CPU(torch::kFloat32).tensorFromBlob(img_float.data, {1, 224, 224, 3});
  auto img_tensor = torch::from_blob(img_float.data, {1, 224, 224, 3});//.to(torch::CPU);
  img_tensor = img_tensor.permute({0,3,1,2});
  img_tensor[0][0] = img_tensor[0][0].sub_(0.485).div_(0.229);
  img_tensor[0][1] = img_tensor[0][1].sub_(0.456).div_(0.224);
  img_tensor[0][2] = img_tensor[0][2].sub_(0.406).div_(0.225);
  inputs.push_back(img_tensor);
  
  // Execute the model and turn its output into a tensor.
  torch::Tensor out_tensor = module.forward(inputs).toTensor();
  std::cout << out_tensor.slice(/*dim=*/1, /*start=*/0, /*end=*/10) << '\n';

  // Load labels
  std::string label_file = argv[3];
  std::ifstream rf(label_file.c_str());
  CHECK(rf) << "Unable to open labels file " << label_file;
  std::string line;
  std::vector labels;
  while (std::getline(rf, line))
    labels.push_back(line);
  std::cout << "Found all " << labels.size() << " labels"< result = out_tensor.sort(-1, true);
  torch::Tensor top_scores = std::get<0>(result)[0];
  torch::Tensor top_idxs = std::get<1>(result)[0].toType(torch::kInt32);
  
  auto top_scores_a = top_scores.accessor();
  auto top_idxs_a = top_idxs.accessor();

  for (int i = 0; i < 5; ++i)
  {
    int idx = top_idxs_a[i];
    std::cout<<"top-" << i+1 << " label:"<

参考资料

https://pytorch.org/blog/model-serving-in-pyorch/
https://medium.com/datadriveninvestor/deploy-your-pytorch-model-to-production-f69460192217
https://github.com/iamhankai/cpp-pytorch
https://pytorch.org/tutorials/advanced/cpp_export.html#step-1-converting-your-pytorch-model-to-torch-script

你可能感兴趣的:(PyTorch,深度学习,深度学习,PyTorch)