Python基于matplotlib的数据可视化

目录:

  • 基于matplotlib的数据可视化
    • matplotlib.pyplot基于Python语言的绘图函数
      • 基本图形绘制

基于matplotlib的数据可视化

matplotlib.pyplot基于Python语言的绘图函数

基本图形绘制

  1. 缺省样式

    
    # -*- coding:utf-8 -*-
    
    
    from __future__ import unicode_literals
    import numpy as np 
    import matplotlib.pyplot as mp 
    
    #生成曲线上各点的水平坐标
    
    x=np.linspace(-np.pi,np.pi,1000)
    
    cos_y=np.cos(x)/2
    sin_y=np.sin(x)
    
    h_y=x/2
    
    #用直线链接曲线上的各点
    
    mp.plot(x,cos_y)
    mp.plot(x,sin_y)
    mp.plot(x,h_y)
    
    #显示图形
    
    mp.show()

    Python基于matplotlib的数据可视化_第1张图片

  2. 设置线型、线宽和颜色

    1. 代码:

      
      # -*- coding: utf-8 -*-
      
      from __future__ import unicode_literals
      import numpy as np
      import matplotlib.pyplot as mp
      
      # 生成曲线上各点的水平坐标
      
      x = np.linspace(-np.pi, np.pi, 1000)
      
      # 根据曲线函数计算其上各点的垂直坐标
      
      cos_y = np.cos(x) / 2
      sin_y = np.sin(x)
      
      # 用直线连接曲线上各点
      
      mp.plot(x, cos_y, linestyle='-', linewidth=1,
              color='dodgerblue')
      mp.plot(x, sin_y, linestyle='-', linewidth=1,
              color='orangered')
      
      # 显示图形
      
      mp.show()
      

      Python基于matplotlib的数据可视化_第2张图片

  3. 设置坐标范围

    1. 设置水平坐标范围:mp.xlim(最小值, 最大值)
    2. 设置垂直坐标范围:mp.ylim(最小值, 最大值)
    3. 代码:

      
      # -*- coding:utf-8 -*-
      
      from __future__ import unicode_literals
      import matplotlib.pyplot as mp 
      
      #   plotting 测绘 library 
      
      import numpy as np 
      
      #生成曲线上各点的水平坐标
      
      x=np.linspace(-np.pi,np.pi,2000)
      
      #根据曲线函数计算其上各点的垂直坐标
      
      cos_y=np.cos(x)/2
      sin_y=np.sin(x)
      
      #设置坐标范围
      
      mp.xlim(x.min()*1.1,x.max()*1.1)
      mp.ylim(min(cos_y.min(),sin_y.min())*1.1,
              max(cos_y.max(),sin_y.max())*1.1)
      
      #用直线连接曲线上各点
      
      mp.plot(x,cos_y,linestyle='-',linewidth=1,
          color='dodgerblue')
      mp.plot(x,sin_y,linestyle='-',linewidth=1,
          color='orangered')
      
      #显示图形
      
      mp.show()
  4. 设置坐标轴刻度标签

    1. mp.xticks(刻度标签位置, 刻度标签文本)
    2. mp.yticks(刻度标签位置, 刻度标签文本)
    3. 代码:

      
      # -*- coding:utf-8 -*-
      
      from __future__ import unicode_literals
      import matplotlib.pyplot as mp 
      
      #   plotting 测绘 library 
      
      import numpy as np 
      
      #生成曲线上各点的水平坐标
      
      x=np.linspace(-np.pi,np.pi,2000)
      
      #根据曲线函数计算其上各点的垂直坐标
      
      cos_y=np.cos(x)/2
      sin_y=np.sin(x)
      
      #设置坐标范围
      
      mp.xlim(x.min()*1.1,x.max()*1.1)
      mp.ylim(min(cos_y.min(),sin_y.min())*1.1,
              max(cos_y.max(),sin_y.max())*1.1)
      
      mp.xticks([-np.pi,-np.pi/2,np.pi/2,np.pi*3/4,np.pi],
          [r'$-\pi$',r'$-\frac{\pi}{2}$',r'$0$',
          r'$\frac{\pi}{2}$',r'$\frac{3\pi}{4}$',r'$\pi$'])
      mp.yticks([-1,-0.5,0.5,1])
      
      #用直线连接曲线上各点
      
      mp.plot(x,cos_y,linestyle='-',linewidth=1,
          color='dodgerblue')
      mp.plot(x,sin_y,linestyle='-',linewidth=1,
          color='orangered')
      
      #显示图形
      
      mp.show()

      Python基于matplotlib的数据可视化_第3张图片

  5. 将矩形坐标轴改成十字坐标轴

    1. 代码:

      
      # -*- coding: utf-8 -*-
      
      from __future__ import unicode_literals
      import numpy as np
      import matplotlib.pyplot as mp
      
      # 生成曲线上各点的水平坐标
      
      x = np.linspace(-np.pi, np.pi, 1000)
      
      # 根据曲线函数计算其上各点的垂直坐标
      
      cos_y = np.cos(x) / 2
      sin_y = np.sin(x)
      
      # 设置坐标范围
      
      mp.xlim(x.min() * 1.1, x.max() * 1.1)
      mp.ylim(min(cos_y.min(), sin_y.min()) * 1.1,
              max(cos_y.max(), sin_y.max()) * 1.1)
      
      # 设置坐标轴刻度标签
      
      mp.xticks([
          -np.pi, -np.pi / 2, 0, np.pi / 2, np.pi * 3 / 4, np.pi], [
          r'$-\pi$', r'$-\frac{\pi}{2}$', r'$0$',
          r'$\frac{\pi}{2}$', r'$\frac{3\pi}{4}$', r'$\pi$'])
      mp.yticks([-1, -0.5, 0.5, 1])
      
      # 将矩形坐标轴改成十字坐标轴
      
      
      # 获取当前坐标轴对象
      
      ax = mp.gca()
      
      # 将垂直坐标刻度置于左边框
      
      ax.yaxis.set_ticks_position('left')
      
      # 将左边框置于数据坐标原点
      
      ax.spines['left'].set_position(('data', 0))
      
      # 将水平坐标刻度置于底边框
      
      ax.xaxis.set_ticks_position('bottom')
      
      # 将底边框置于数据坐标原点
      
      ax.spines['bottom'].set_position(('data', 0))
      
      # 将右边框和顶边框设置成无色
      
      ax.spines['right'].set_color('none')
      ax.spines['top'].set_color('none')
      
      # 用直线连接曲线上各点
      
      mp.plot(x, cos_y, linestyle='-', linewidth=1,
              color='dodgerblue')
      mp.plot(x, sin_y, linestyle='-', linewidth=1,
              color='orangered')
      
      # 显示图形
      
      mp.show()

      Python基于matplotlib的数据可视化_第4张图片

  6. 显示图例

    1. mp.plot(…, label=图例文本)
    2. mp.legend(loc=图例位置)
    3. 代码:

      
      # -*- coding: utf-8 -*-
      
      from __future__ import unicode_literals
      import numpy as np
      import matplotlib.pyplot as mp
      
      # 生成曲线上各点的水平坐标
      
      x = np.linspace(-np.pi, np.pi, 1000)
      
      # 根据曲线函数计算其上各点的垂直坐标
      
      cos_y = np.cos(x) / 2
      sin_y = np.sin(x)
      
      # 设置坐标范围
      
      mp.xlim(x.min() * 1.1, x.max() * 1.1)
      mp.ylim(min(cos_y.min(), sin_y.min()) * 1.1,
              max(cos_y.max(), sin_y.max()) * 1.1)
      
      # 设置坐标轴刻度标签
      
      mp.xticks([
          -np.pi, -np.pi / 2, 0, np.pi / 2, np.pi * 3 / 4, np.pi], [
          r'$-\pi$', r'$-\frac{\pi}{2}$', r'$0$',
          r'$\frac{\pi}{2}$', r'$\frac{3\pi}{4}$', r'$\pi$'])
      mp.yticks([-1, -0.5, 0.5, 1])
      
      # 将矩形坐标轴改成十字坐标轴
      
      
      # 获取当前坐标轴对象
      
      ax = mp.gca()
      
      # 将垂直坐标刻度置于左边框
      
      ax.yaxis.set_ticks_position('left')
      
      # 将左边框置于数据坐标原点
      
      ax.spines['left'].set_position(('data', 0))
      
      # 将水平坐标刻度置于底边框
      
      ax.xaxis.set_ticks_position('bottom')
      
      # 将底边框置于数据坐标原点
      
      ax.spines['bottom'].set_position(('data', 0))
      
      # 将右边框和顶边框设置成无色
      
      ax.spines['right'].set_color('none')
      ax.spines['top'].set_color('none')
      
      # 用直线连接曲线上各点
      
      mp.plot(x, cos_y, linestyle='-', linewidth=1,
              color='dodgerblue', label=r'$y=\frac{1}{2}cos(x)$')
      mp.plot(x, sin_y, linestyle='-', linewidth=1,
              color='orangered', label=r'$y=sin(x)$')
      mp.legend(loc='upper left')
      
      # 显示图形
      
      mp.show()

      Python基于matplotlib的数据可视化_第5张图片

  7. 添加特殊点

    1. mp.scatter(点集水平坐标数组,点集垂直坐标数组,…)
    2. 代码:

      
      # -*- coding: utf-8 -*-
      
      from __future__ import unicode_literals
      import numpy as np
      import matplotlib.pyplot as mp
      
      # 生成曲线上各点的水平坐标
      
      x = np.linspace(-np.pi, np.pi, 1000)
      
      # 根据曲线函数计算其上各点的垂直坐标
      
      cos_y = np.cos(x) / 2
      sin_y = np.sin(x)
      
      # 计算特殊点的坐标
      
      xo = np.pi * 3 / 4
      yo_cos = np.cos(xo) / 2
      yo_sin = np.sin(xo)
      
      # 设置坐标范围
      
      mp.xlim(x.min() * 1.1, x.max() * 1.1)
      mp.ylim(min(cos_y.min(), sin_y.min()) * 1.1,
              max(cos_y.max(), sin_y.max()) * 1.1)
      
      # 设置坐标轴刻度标签
      
      mp.xticks([
          -np.pi, -np.pi / 2, 0, np.pi / 2, np.pi * 3 / 4, np.pi], [
          r'$-\pi$', r'$-\frac{\pi}{2}$', r'$0$',
          r'$\frac{\pi}{2}$', r'$\frac{3\pi}{4}$', r'$\pi$'])
      mp.yticks([-1, -0.5, 0.5, 1])
      
      # 将矩形坐标轴改成十字坐标轴
      
      
      # 获取当前坐标轴对象
      
      ax = mp.gca()
      
      # 将垂直坐标刻度置于左边框
      
      ax.yaxis.set_ticks_position('left')
      
      # 将左边框置于数据坐标原点
      
      ax.spines['left'].set_position(('data', 0))
      
      # 将水平坐标刻度置于底边框
      
      ax.xaxis.set_ticks_position('bottom')
      
      # 将底边框置于数据坐标原点
      
      ax.spines['bottom'].set_position(('data', 0))
      
      # 将右边框和顶边框设置成无色
      
      ax.spines['right'].set_color('none')
      ax.spines['top'].set_color('none')
      
      # 用直线连接曲线上各点
      
      mp.plot(x, cos_y, linestyle='-', linewidth=1,
              color='dodgerblue', label=r'$y=\frac{1}{2}cos(x)$')
      mp.plot(x, sin_y, linestyle='-', linewidth=1,
              color='orangered', label=r'$y=sin(x)$')
      
      # 绘制特殊点
      
      mp.plot([xo, xo], [yo_cos, yo_sin], linestyle='--',
              linewidth=1, color='limegreen')
      mp.scatter([xo, xo], [yo_cos, yo_sin], s=60,
                 edgecolor='limegreen', facecolor='white',
                 zorder=3)
      mp.legend(loc='upper left')
      
      # 显示图形
      
      mp.show()

      Python基于matplotlib的数据可视化_第6张图片

  8. 添加注释

    1. mp.annotate(
      注释文本,
      xy=目标位置,
      xytext=文本位置,
      textcoords=坐标属性,
      fontsize=字体大小,
      arrowprops=箭头属性)
    2. 代码:

      
      # -*- coding: utf-8 -*-
      
      from __future__ import unicode_literals
      import numpy as np
      import matplotlib.pyplot as mp
      
      # 生成曲线上各点的水平坐标
      
      x = np.linspace(-np.pi, np.pi, 1000)
      
      # 根据曲线函数计算其上各点的垂直坐标
      
      cos_y = np.cos(x) / 2
      sin_y = np.sin(x)
      
      # 计算特殊点的坐标
      
      xo = np.pi * 3 / 4
      yo_cos = np.cos(xo) / 2
      yo_sin = np.sin(xo)
      
      # 设置坐标范围
      
      mp.xlim(x.min() * 1.1, x.max() * 1.1)
      mp.ylim(min(cos_y.min(), sin_y.min()) * 1.1,
              max(cos_y.max(), sin_y.max()) * 1.1)
      
      # 设置坐标轴刻度标签
      
      mp.xticks([
          -np.pi, -np.pi / 2, 0, np.pi / 2, np.pi * 3 / 4, np.pi], [
          r'$-\pi$', r'$-\frac{\pi}{2}$', r'$0$',
          r'$\frac{\pi}{2}$', r'$\frac{3\pi}{4}$', r'$\pi$'])
      mp.yticks([-1, -0.5, 0.5, 1])
      
      # 将矩形坐标轴改成十字坐标轴
      
      
      # 获取当前坐标轴对象
      
      ax = mp.gca()
      
      # 将垂直坐标刻度置于左边框
      
      ax.yaxis.set_ticks_position('left')
      
      # 将左边框置于数据坐标原点
      
      ax.spines['left'].set_position(('data', 0))
      
      # 将水平坐标刻度置于底边框
      
      ax.xaxis.set_ticks_position('bottom')
      
      # 将底边框置于数据坐标原点
      
      ax.spines['bottom'].set_position(('data', 0))
      
      # 将右边框和顶边框设置成无色
      
      ax.spines['right'].set_color('none')
      ax.spines['top'].set_color('none')
      
      # 用直线连接曲线上各点
      
      mp.plot(x, cos_y, linestyle='-', linewidth=1,
              color='dodgerblue', label=r'$y=\frac{1}{2}cos(x)$')
      mp.plot(x, sin_y, linestyle='-', linewidth=1,
              color='orangered', label=r'$y=sin(x)$')
      
      # 绘制特殊点
      
      mp.plot([xo, xo], [yo_cos, yo_sin], linestyle='--',
              linewidth=1, color='limegreen')
      mp.scatter([xo, xo], [yo_cos, yo_sin], s=60,
                 edgecolor='limegreen', facecolor='white',
                 zorder=3)
      
      # 添加注释
      
      mp.annotate(
          r'$\frac{1}{2}cos(\frac{3\pi}{4})=-\frac{\sqrt{2}}{4}$',
          xy=(xo, yo_cos), xycoords='data',
          xytext=(-90, -40), textcoords='offset points',
          fontsize=14, arrowprops=dict(
              arrowstyle='->', connectionstyle='arc3, rad=0.2'))
      mp.annotate(
          r'$sin(\frac{3\pi}{4})=\frac{\sqrt{2}}{2}$',
          xy=(xo, yo_sin), xycoords='data',
          xytext=(20, 20), textcoords='offset points',
          fontsize=14, arrowprops=dict(
              arrowstyle='->', connectionstyle='arc3, rad=0.2'))
      
      # 显示图例
      
      mp.legend(loc='upper left')
      
      # 显示图形
      
      mp.show()

      Python基于matplotlib的数据可视化_第7张图片

  9. 图形对象

    1. 说明:一个图像对象实际上就可以被看做是一个显示图形的窗口,出了缺省创建的图形窗口以外,也可以通过函数手动创建图形窗口并设置特殊的属性。
    2. 属性:
      1. mp.figure(对象名(标题文本), figsize=窗口大小,
        dpi=分辨率, facecolor=窗口颜色)
      2. mp.title(标题文本, fontsize=字体大小)
      3. mp.xlabel(水平轴标签文本, fontsize=字体大小)
      4. mp.ylabel(垂直轴标签文本, fontsize=字体大小)
      5. mp.tick_params(labelsize=刻度标签字体大小)
      6. mp.grid(linestyle=网格线风格)
      7. 注意如果调用figure()函数时所指定的对象名并不存在,则新建一个图形窗口,同时将其设置为当前窗口,如果该对象名已经存在,则不再建新窗口,而只是将其所对应的图形窗口设置为当前窗口。调用该函数以后的所有绘图都在当前窗口中完成。
    3. 代码:

      
      # -*- coding: utf-8 -*-
      
      from __future__ import unicode_literals
      import numpy as np
      import matplotlib.pyplot as mp
      x = np.linspace(-np.pi, np.pi, 1000)
      cos_y = np.cos(x) / 2
      sin_y = np.sin(x)
      mp.figure('Figure Object 1', figsize=(8, 6), dpi=60,
                facecolor='lightgray')#打开窗口,设置分辨率
      mp.title('Figure Object 1', fontsize=20)#设置标题
      mp.xlabel('x', fontsize=14)#水平标签文本,fontsize=字体大小
      mp.ylabel('y', fontsize=14)#垂直标签文件,fontsize字体大小
      mp.tick_params(labelsize=10)#labelsize=刻度标签字体大小
      mp.grid(linestyle=':')#linestyle=网格线风格
      
      mp.figure('Figure Object 2', figsize=(8, 6), dpi=60,
                facecolor='lightgray')
      mp.title('Figure Object 2', fontsize=20)
      mp.xlabel('x', fontsize=14)
      mp.ylabel('y', fontsize=14)
      mp.tick_params(labelsize=10)
      mp.grid(linestyle=':')
      
      mp.figure('Figure Object 1')
      mp.plot(x, cos_y, color='dodgerblue',
              label=r'$y=\frac{1}{2}cos(x)$')
      mp.figure('Figure Object 2')
      mp.plot(x, sin_y, color='orangered', label=r'$y=sin(x)$')
      mp.legend()
      mp.figure('Figure Object 1')
      mp.legend()
      mp.show()
      

      Python基于matplotlib的数据可视化_第8张图片

  10. 子坐标图

    1. mp.subplot(总行数, 总列数, 图序号)
    2. 代码:sub1.py、sub2.py、sub3.py

      
      # -*- coding: utf-8 -*-
      
      from __future__ import unicode_literals
      import matplotlib.pyplot as mp
      mp.figure(facecolor='lightgray')
      mp.subplot(221)
      mp.xticks(())
      mp.yticks(())
      mp.text(0.5, 0.5, '1', ha='center', va='center', size=36,
              alpha=0.5)
      mp.subplot(222)
      mp.xticks(())
      mp.yticks(())
      mp.text(0.5, 0.5, '2', ha='center', va='center', size=36,
              alpha=0.5)
      mp.subplot(223)
      mp.xticks(())
      mp.yticks(())
      mp.text(0.5, 0.5, '3', ha='center', va='center', size=36,
              alpha=0.5)
      mp.subplot(224)
      mp.xticks(())
      mp.yticks(())
      mp.text(0.5, 0.5, '4', ha='center', va='center', size=36,
              alpha=0.5)
      mp.tight_layout()
      mp.show()

      Python基于matplotlib的数据可视化_第9张图片

      
      # -*- coding: utf-8 -*-
      
      from __future__ import unicode_literals
      import matplotlib.pyplot as mp
      import matplotlib.gridspec as mg
      mp.figure(facecolor='lightgray')
      gs = mg.GridSpec(3, 3)
      mp.subplot(gs[0, :2])
      mp.xticks(())
      mp.yticks(())
      mp.text(0.5, 0.5, '1', ha='center', va='center', size=36,
              alpha=0.5)
      mp.subplot(gs[1:, 0])
      mp.xticks(())
      mp.yticks(())
      mp.text(0.5, 0.5, '2', ha='center', va='center', size=36,
              alpha=0.5)
      mp.subplot(gs[2, 1:])
      mp.xticks(())
      mp.yticks(())
      mp.text(0.5, 0.5, '3', ha='center', va='center', size=36,
              alpha=0.5)
      mp.subplot(gs[:2, 2])
      mp.xticks(())
      mp.yticks(())
      mp.text(0.5, 0.5, '4', ha='center', va='center', size=36,
              alpha=0.5)
      mp.subplot(gs[1, 1])
      mp.xticks(())
      mp.yticks(())
      mp.text(0.5, 0.5, '5', ha='center', va='center', size=36,
              alpha=0.5)
      mp.tight_layout()
      mp.show()

      Python基于matplotlib的数据可视化_第10张图片

      
      # -*- coding: utf-8 -*-
      
      from __future__ import unicode_literals
      import matplotlib.pyplot as mp
      mp.figure(facecolor='lightgray')
      mp.axes([0.03, 0.038, 0.94, 0.924])
      mp.xticks(())
      mp.yticks(())
      mp.text(0.5, 0.5, '1', ha='center', va='center', size=36,
              alpha=0.5)
      mp.axes([0.63, 0.076, 0.31, 0.308])
      mp.xticks(())
      mp.yticks(())
      mp.text(0.5, 0.5, '2', ha='center', va='center', size=36,
              alpha=0.5)
      mp.show()
      

      Python基于matplotlib的数据可视化_第11张图片

  11. 设置坐标轴刻度定位器

    1. 怎么设置:
      ax = mp.gca()
      ax.xaxis.set_major_locator(刻度定位器对象)
      ax.xaxis.set_minor_locator(刻度定位器对象)
      ax.yaxis.set_major_locator(刻度定位器对象)
      ax.yaxis.set_minor_locator(刻度定位器对象)
    2. 代码:

      
      # -*- coding: utf-8 -*-
      
      from __future__ import unicode_literals
      import numpy as np
      import matplotlib.pyplot as mp
      mp.figure()
      locators = [
          'mp.NullLocator()',
          'mp.MaxNLocator(nbins=3, steps=[1, 3, 5, 7, 9])',
          'mp.FixedLocator(locs=[0, 2.5, 7.5, 10])',
          'mp.AutoLocator()',
          'mp.IndexLocator(offset=0.5, base=1.5)',
          'mp.MultipleLocator()',
          'mp.LinearLocator(numticks=21)',
          'mp.LogLocator(base=2, subs=[1.0])']
      n_locators = len(locators)
      for i, locator in enumerate(locators):
          mp.subplot(n_locators, 1, i + 1)
          mp.xlim(0, 10)
          mp.ylim(-1, 1)
          mp.yticks(())
          ax = mp.gca()
          ax.spines['left'].set_color('none')
          ax.spines['top'].set_color('none')
          ax.spines['right'].set_color('none')
          ax.spines['bottom'].set_position(('data', 0))
          ax.xaxis.set_major_locator(eval(locator))
          ax.xaxis.set_minor_locator(mp.MultipleLocator(0.1))
          mp.plot(np.arange(11), np.zeros(11), color='none')
          mp.text(5, 0.3, locator[3:], ha='center', size=12)
      mp.tight_layout()
      mp.show()
      

      Python基于matplotlib的数据可视化_第12张图片

  12. 散点图

    1. mp.scatter(水平坐标数组, 垂直坐标数组,
      s=大小, c=颜色, cmap=颜色映射, alpha=透明度)
    2. 代码:

      
      # -*- coding: utf-8 -*-
      
      from __future__ import unicode_literals
      import numpy as np
      import matplotlib.pyplot as mp
      n = 1000
      x = np.random.normal(0, 1, n)
      y = np.random.normal(0, 1, n)
      d = np.sqrt(x ** 2 + y ** 2)
      mp.figure('Scatter', facecolor='lightgray')
      mp.title('Scatter', fontsize=20)
      mp.xlabel('x', fontsize=14)
      mp.ylabel('y', fontsize=14)
      mp.tick_params(labelsize=10)
      mp.grid(linestyle=':')
      mp.scatter(x, y, s=6, c=d, cmap='jet_r', alpha=0.5)
      mp.show()

      Python基于matplotlib的数据可视化_第13张图片

  13. 填充

    1. mp.fill_between(扫描线水平坐标,
      扫描线起点垂直坐标, 扫描线终点垂直坐标,
      color=颜色, alpha=透明度)
    2. 代码:

      
      # -*- coding: utf-8 -*-
      
      from __future__ import unicode_literals
      import numpy as np
      import matplotlib.pyplot as mp
      n = 1000
      x = np.linspace(0, 8 * np.pi, n)
      sin_y = np.sin(x)
      cos_y = np.cos(x / 2) / 2
      mp.figure('Fill', facecolor='lightgray')
      mp.title('Fill', fontsize=20)
      mp.xlabel('x', fontsize=14)
      mp.ylabel('y', fontsize=14)
      mp.tick_params(labelsize=10)
      mp.grid(linestyle=':')
      mp.plot(x, sin_y, c='dodgerblue', label=r'$y=sin(x)$')
      mp.plot(x, cos_y, c='orangered',
              label=r'$y=\frac{1}{2}cos(\frac{x}{2})$')
      mp.fill_between(x, cos_y, sin_y, cos_y < sin_y,
                      color='dodgerblue', alpha=0.5)
      mp.fill_between(x, cos_y, sin_y, cos_y > sin_y,
                      color='orangered', alpha=0.5)
      mp.legend()
      mp.show()

      Python基于matplotlib的数据可视化_第14张图片

  14. 条形图

    1. mp.bar(矩形条的水平坐标, 矩形条的高度
      ec=边框色, fc=填充色, label=图例标签)
    2. 代码:bar.py

      
      # -*- coding: utf-8 -*-
      
      from __future__ import unicode_literals
      import numpy as np
      import matplotlib.pyplot as mp
      n = 12
      x = np.arange(n)
      y1 = np.random.uniform(0.5, 1.0, n) * (1 - x / n)
      y2 = np.random.uniform(0.5, 1.0, n) * (1 - x / n)
      mp.figure('Bar', facecolor='lightgray')
      mp.title('Bar', fontsize=20)
      mp.xlabel('x', fontsize=14)
      mp.ylabel('y', fontsize=14)
      mp.xticks(x, x + 1)
      mp.ylim(-1.25, 1.25)
      mp.tick_params(labelsize=10)
      mp.grid(axis='y', linestyle=':')
      mp.bar(x, y1, ec='white', fc='dodgerblue',
             label='Sample 1')
      for _x, _y in zip(x, y1):
          mp.text(_x, _y, '%.2f' % _y, ha='center',
                  va='bottom', size=8)
      mp.bar(x, -y2, ec='white', fc='dodgerblue', alpha=0.5,
             label='Sample 2')
      for _x, _y in zip(x, y2):
          mp.text(_x, -_y - 0.015, '%.2f' % _y, ha='center',
                  va='top', size=8)
      mp.legend()
      mp.show()

      Python基于matplotlib的数据可视化_第15张图片

  15. 等高线图

    1. mp.contour(x, y, z, 密度, colors=颜色,
      linewidths=线宽)
    2. mp.contourf(x, y, z, 密度, cmap=颜色映射)
    3. 代码:

      
      # -*- coding: utf-8 -*-
      
      from __future__ import unicode_literals
      import numpy as np
      import matplotlib.pyplot as mp
      n = 1000
      x, y = np.meshgrid(np.linspace(-3, 3, n),
                         np.linspace(-3, 3, n))
      z = (1 - x / 2 + x ** 5 + y ** 3) * np.exp(-x ** 2 - y ** 2)
      mp.figure('Contour', facecolor='lightgray')
      mp.title('Contour', fontsize=20)
      mp.xlabel('x', fontsize=14)
      mp.ylabel('y', fontsize=14)
      mp.tick_params(labelsize=10)
      mp.grid(linestyle=':')
      mp.contourf(x, y, z, 8, cmap='jet')
      cntr = mp.contour(x, y, z, 8, colors='black', linewidths=0.5)
      mp.clabel(cntr, inline_spacing=1, fmt='%.1f', fontsize=8)
      mp.show()

      Python基于matplotlib的数据可视化_第16张图片

  16. 热力图
    1. mp.imshow(深度坐标, cmap=颜色映射,
      origin=垂直轴向)
    2. 代码:hot.py
  17. 三维曲面/线框图

    1. 怎么做
      from mpl_toolkits.mplot3d import axes3d
      ax=mp.gca(projection=’3d’)
      ax.plot_surface(x, y, z, rstride=垂直步长,
      cstride=水平步长, cmap=颜色映射)
      ax.plot_wireframe(x, y, z, rstride=垂直步长,
      cstride=水平步长, color=颜色,
      linewidth=线宽)
    2. 代码:

      
      # -*- coding: utf-8 -*-
      
      from __future__ import unicode_literals
      import numpy as np
      import matplotlib.pyplot as mp
      from mpl_toolkits.mplot3d import axes3d
      n = 1000
      x, y = np.meshgrid(np.linspace(-3, 3, n),
                         np.linspace(-3, 3, n))
      z = (1 - x / 2 + x ** 5 + y ** 3) * np.exp(-x ** 2 - y ** 2)
      mp.figure('3D Surface')
      ax = mp.gca(projection='3d')
      mp.title('3D Surface', fontsize=20)
      ax.set_xlabel('x', fontsize=14)
      ax.set_ylabel('y', fontsize=14)
      ax.set_zlabel('z', fontsize=14)
      mp.tick_params(labelsize=10)
      ax.plot_surface(x, y, z, rstride=10, cstride=10, cmap='jet')
      mp.figure('3D Wireframe')
      ax = mp.gca(projection='3d')
      mp.title('3D Wireframe', fontsize=20)
      ax.set_xlabel('x', fontsize=14)
      ax.set_ylabel('y', fontsize=14)
      ax.set_zlabel('z', fontsize=14)
      mp.tick_params(labelsize=10)
      ax.plot_wireframe(x, y, z, rstride=20, cstride=20,
                        linewidth=0.5, color='orangered')
      mp.show()

      Python基于matplotlib的数据可视化_第17张图片
      Python基于matplotlib的数据可视化_第18张图片

  18. 饼图

    1. mp.pie(值,空,标,色,格)
    2. 代码:pie.py

      
      # -*- coding: utf-8 -*-
      
      from __future__ import unicode_literals
      import matplotlib.pyplot as mp
      values = [26, 17, 21, 29, 11]
      spaces = [0.05, 0.01, 0.01, 0.01, 0.01]
      labels = ['Python', 'JavaScript', 'C++', 'C', 'PHP']
      colors = ['dodgerblue', 'orangered', 'limegreen', 'violet',
                'gold']
      mp.figure('Pie', facecolor='lightgray')
      mp.title('Pie', fontsize=20)
      mp.pie(values, spaces, labels, colors, '%d%%', shadow=True,
             startangle=90)
      mp.axis('equal')
      mp.show()
      

      Python基于matplotlib的数据可视化_第19张图片

  19. 坐标格线

    1. ax = mp.gca()
    2. ax.grid(which=主次刻度, axis=横纵轴,
      linewidth=线宽, linestyle=线型, color=颜色)
    3. 代码:grid.py

      
      # -*- coding: utf-8 -*-
      
      from __future__ import unicode_literals
      import numpy as np
      import matplotlib.pyplot as mp
      x = np.linspace(-5, 5, 1000)
      y = 8 * np.sinc(x)
      mp.figure('Grid', facecolor='lightgray')
      mp.title('Grid', fontsize=20)
      mp.xlabel('x', fontsize=14)
      mp.ylabel('y', fontsize=14)
      ax = mp.gca()
      ax.xaxis.set_major_locator(mp.MultipleLocator())
      ax.xaxis.set_minor_locator(mp.MultipleLocator(.1))
      ax.yaxis.set_major_locator(mp.MultipleLocator())
      ax.yaxis.set_minor_locator(mp.MultipleLocator(.1))
      mp.tick_params(labelsize=10)
      ax.grid(which='major', axis='both', linewidth=0.75,
              linestyle='-', color='lightgray')
      ax.grid(which='minor', axis='both', linewidth=0.25,
              linestyle='-', color='lightgray')
      mp.plot(x, y, c='dodgerblue', label=r'$y=8sinc(x)$')
      mp.legend()
      mp.show()
      

      Python基于matplotlib的数据可视化_第20张图片

  20. 极坐标
    1. ax = mp.gca(projection=’polar’)
    2. mp.plot(极角, 极径, …)

你可能感兴趣的:(python人工智能,Python学习之路)