Latex写算法的伪代码排版

algorithmicx例子

Latex写算法的伪代码排版_第1张图片
相应代码:
[plain]  view plain  copy
 
  1. \documentclass[11pt]{ctexart}  
  2. \usepackage[top=2cm, bottom=2cm, left=2cm, right=2cm]{geometry}  
  3. \usepackage{algorithm}  
  4. \usepackage{algorithmicx}  
  5. \usepackage{algpseudocode}  
  6. \usepackage{amsmath}  
  7.   
  8. \floatname{algorithm}{算法}  
  9. \renewcommand{\algorithmicrequire}{\textbf{输入:}}  
  10. \renewcommand{\algorithmicensure}{\textbf{输出:}}  
  11.   
  12. \begin{document}  
  13.     \begin{algorithm}  
  14.         \caption{用归并排序求逆序数}  
  15.         \begin{algorithmic}[1] %每行显示行号  
  16.             \Require $Array$数组,$n$数组大小  
  17.             \Ensure 逆序数  
  18.             \Function {MergerSort}{$Array, left, right$}  
  19.                 \State $result \gets 0$  
  20.                 \If {$left < right$}  
  21.                     \State $middle \gets (left + right) / 2$  
  22.                     \State $result \gets result +$ \Call{MergerSort}{$Array, left, middle$}  
  23.                     \State $result \gets result +$ \Call{MergerSort}{$Array, middle, right$}  
  24.                     \State $result \gets result +$ \Call{Merger}{$Array,left,middle,right$}  
  25.                 \EndIf  
  26.                 \State \Return{$result$}  
  27.             \EndFunction  
  28.             \State  
  29.             \Function{Merger}{$Array, left, middle, right$}  
  30.                 \State $i\gets left$  
  31.                 \State $j\gets middle$  
  32.                 \State $k\gets 0$  
  33.                 \State $result \gets 0$  
  34.                 \While{$i
  35.                     \If{$Array[i]
  36.                         \State $B[k++]\gets Array[i++]$  
  37.                     \Else  
  38.                         \State $B[k++] \gets Array[j++]$  
  39.                         \State $result \gets result + (middle - i)$  
  40.                     \EndIf  
  41.                 \EndWhile  
  42.                 \While{$i
  43.                     \State $B[k++] \gets Array[i++]$  
  44.                 \EndWhile  
  45.                 \While{$j
  46.                     \State $B[k++] \gets Array[j++]$  
  47.                 \EndWhile  
  48.                 \For{$i = 0 \to k-1$}  
  49.                     \State $Array[left + i] \gets B[i]$  
  50.                 \EndFor  
  51.                 \State \Return{$result$}  
  52.             \EndFunction  
  53.         \end{algorithmic}  
  54.     \end{algorithm}  
  55. \end{document}  

algorithm例子

前期准备
[plain]  view plain  copy
 
  1. \usepackage{algorithm}  
  2. \usepackage{algpseudocode}  
  3. \usepackage{amsmath}  
  4. \renewcommand{\algorithmicrequire}{\textbf{Input:}}  % Use Input in the format of Algorithm  
  5. \renewcommand{\algorithmicensure}{\textbf{Output:}} % Use Output in the format of Algorithm  

example 1

Latex写算法的伪代码排版_第2张图片
代码:
[plain]  view plain  copy
 
  1.   \begin{algorithm}[htb]  
  2.   \caption{ Framework of ensemble learning for our system.}  
  3.   \label{alg:Framwork}  
  4.   \begin{algorithmic}[1]  
  5.     \Require  
  6.       The set of positive samples for current batch, $P_n$;  
  7.       The set of unlabelled samples for current batch, $U_n$;  
  8.       Ensemble of classifiers on former batches, $E_{n-1}$;  
  9.     \Ensure  
  10.       Ensemble of classifiers on the current batch, $E_n$;  
  11.     \State Extracting the set of reliable negative and/or positive samples $T_n$ from $U_n$ with help of $P_n$;  
  12.     \label{code:fram:extract}  
  13.     \State Training ensemble of classifiers $E$ on $T_n \cup P_n$, with help of data in former batches;  
  14.     \label{code:fram:trainbase}  
  15.     \State $E_n=E_{n-1}cup E$;  
  16.     \label{code:fram:add}  
  17.     \State Classifying samples in $U_n-T_n$ by $E_n$;  
  18.     \label{code:fram:classify}  
  19.     \State Deleting some weak classifiers in $E_n$ so as to keep the capacity of $E_n$;  
  20.     \label{code:fram:select} \\  
  21.     \Return $E_n$;  
  22.   \end{algorithmic}  
  23. \end{algorithm}  

example 2

Latex写算法的伪代码排版_第3张图片
代码:
[plain]  view plain  copy
 
  1. \begin{algorithm}[h]  
  2.   \caption{An example for format For \& While Loop in Algorithm}  
  3.   \begin{algorithmic}[1]  
  4.     \For{each $i\in [1,9]$}  
  5.       \State initialize a tree $T_{i}$ with only a leaf (the root);  
  6.       \State $T=T\cup T_{i};$  
  7.     \EndFor  
  8.     \ForAll {$c$ such that $c\in RecentMBatch(E_{n-1})$}  
  9.       \label{code:TrainBase:getc}  
  10.       \State $T=T\cup PosSample(c)$;  
  11.       \label{code:TrainBase:pos}  
  12.     \EndFor;  
  13.     \For{$i=1$; $i
  14.       \State $//$ Your source here;  
  15.     \EndFor  
  16.     \For{$i=1$ to $n$}  
  17.       \State $//$ Your source here;  
  18.     \EndFor  
  19.     \State $//$ Reusing recent base classifiers.  
  20.     \label{code:recentStart}  
  21.     \While {$(|E_n| \leq L_1 )and( D \neq \phi)$}  
  22.       \State Selecting the most recent classifier $c_i$ from $D$;  
  23.       \State $D=D-c_i$;  
  24.       \State $E_n=E_n+c_i$;  
  25.     \EndWhile  
  26.     \label{code:recentEnd}  
  27.   \end{algorithmic}  
  28. \end{algorithm}  


example 3
Latex写算法的伪代码排版_第4张图片
代码:
[plain]  view plain  copy
 
  1. \begin{algorithm}[h]  
  2.   \caption{Conjugate Gradient Algorithm with Dynamic Step-Size Control}  
  3.   \label{alg::conjugateGradient}  
  4.   \begin{algorithmic}[1]  
  5.     \Require  
  6.       $f(x)$: objective funtion;  
  7.       $x_0$: initial solution;  
  8.       $s$: step size;  
  9.     \Ensure  
  10.       optimal $x^{*}$  
  11.     \State initial $g_0=0$ and $d_0=0$;  
  12.     \Repeat  
  13.       \State compute gradient directions $g_k=\bigtriangledown f(x_k)$;  
  14.       \State compute Polak-Ribiere parameter $\beta_k=\frac{g_k^{T}(g_k-g_{k-1})}{\parallel g_{k-1} \parallel^{2}}$;  
  15.       \State compute the conjugate directions $d_k=-g_k+\beta_k d_{k-1}$;  
  16.       \State compute the step size $\alpha_k=s/\parallel d_k \parallel_{2}$;  
  17.     \Until{($f(x_k)>f(x_{k-1})$)}  
  18.   \end{algorithmic}  
  19. \end{algorithm}  


example 4

Latex写算法的伪代码排版_第5张图片
代码:
[plain]  view plain  copy
 
  1. \makeatletter  
  2. \def\BState{\State\hskip-\ALG@thistlm}  
  3. \makeatother  
  4. \begin{algorithm}  
  5. \caption{My algorithm}\label{euclid}  
  6. \begin{algorithmic}[1]  
  7. \Procedure{MyProcedure}{}  
  8. \State $\textit{stringlen} \gets \text{length of }\textit{string}$  
  9. \State $i \gets \textit{patlen}$  
  10. \BState \emph{top}:  
  11. \If {$i > \textit{stringlen}$} \Return false  
  12. \EndIf  
  13. \State $j \gets \textit{patlen}$  
  14. \BState \emph{loop}:  
  15. \If {$\textit{string}(i) = \textit{path}(j)$}  
  16. \State $j \gets j-1$.  
  17. \State $i \gets i-1$.  
  18. \State \textbf{goto} \emph{loop}.  
  19. \State \textbf{close};  
  20. \EndIf  
  21. \State $i \gets i+\max(\textit{delta}_1(\textit{string}(i)),\textit{delta}_2(j))$.  
  22. \State \textbf{goto} \emph{top}.  
  23. \EndProcedure  
  24. \end{algorithmic}  
  25. \end{algorithm}  

algorithm2e例子

algorithm2e包可能会与其它包产生冲突,一个常见的错误提示是“Too many }'...”。为了解决这个问题,要在引入algorithm2e包之前加入下面的命令:
[plain]  view plain  copy
 
  1. \makeatletter  
  2. \newif\if@restonecol  
  3. \makeatother  
  4. \let\algorithm\relax  
  5. \let\endalgorithm\relax  

所以前期准备:
[plain]  view plain  copy
 
  1. \makeatletter  
  2. \newif\if@restonecol  
  3. \makeatother  
  4. \let\algorithm\relax  
  5. \let\endalgorithm\relax  
  6. \usepackage[linesnumbered,ruled,vlined]{algorithm2e}%[ruled,vlined]{  
  7. \usepackage{algpseudocode}  
  8. \usepackage{amsmath}  
  9. \renewcommand{\algorithmicrequire}{\textbf{Input:}}  % Use Input in the format of Algorithm  
  10. \renewcommand{\algorithmicensure}{\textbf{Output:}} % Use Output in the format of Algorithm   

example 1

Latex写算法的伪代码排版_第6张图片
代码:
[plain]  view plain  copy
 
  1. \begin{algorithm}  
  2.   \caption{identify Row Context}  
  3.   \KwIn{$r_i$, $Backgrd(T_i)$=${T_1,T_2,\ldots ,T_n}$ and similarity threshold $\theta_r$}  
  4.   \KwOut{$con(r_i)$}  
  5.   $con(r_i)= \Phi$\;  
  6.   \For{$j=1;j \le n;j \ne i$}  
  7.   {  
  8.     float $maxSim=0$\;  
  9.     $r^{maxSim}=null$\;  
  10.     \While{not end of $T_j$}  
  11.     {  
  12.       compute Jaro($r_i,r_m$)($r_m\in T_j$)\;  
  13.       \If{$(Jaro(r_i,r_m) \ge \theta_r)\wedge (Jaro(r_i,r_m)\ge r^{maxSim})$}  
  14.       {  
  15.         replace $r^{maxSim}$ with $r_m$\;  
  16.       }  
  17.     }  
  18.     $con(r_i)=con(r_i)\cup {r^{maxSim}}$\;  
  19.   }  
  20.   return $con(r_i)$\;  
  21. \end{algorithm}  


example 2

Latex写算法的伪代码排版_第7张图片
代码:
[plain]  view plain  copy
 
  1. \begin{algorithm}  
  2. \caption{Service checkpoint image storage node and routing path selection}  
  3. \LinesNumbered  
  4. \KwIn{host server $PM_s$ that $SerImg_k$ is fetched from, $subnet_s$ that $PM_s$ belongs to, $pod_s$ that $PM_s$ belongs to}  
  5. \KwOut{Service image storage server $storageserver$,and the image transfer path $path$}  
  6. $storageserver$ = Storage node selection($PM_s$, $SerImg_k$,$subnet_s$,$pod_s$)\;  
  7. \If{ $storageserver$ $\neq$ null}  
  8. {  
  9.      select a path from $storageserver$ to $PM_s$ and assign the path to $path$\;  
  10. }  
  11.   
  12. \textbf{final} \;  
  13. \textbf{return} $storageserver$ and $path$;  
  14. \end{algorithm}  


example 3

Latex写算法的伪代码排版_第8张图片
代码:
[plain]  view plain  copy
 
  1. \begin{algorithm}  
  2. \caption{Storage node selection}  
  3. \LinesNumbered  
  4. \KwIn{host server $PM_s$ that the checkpoint image $Img$ is fetched from, $subnet_s$ that $PM_s$ belongs to, $pod_s$ that $PM_s$ belongs to}  
  5. \KwOut{Image storage server $storageserver$}  
  6.   
  7. \For{ each host server $PM_i$ in the same subnet with $PM_s$ }  
  8. {  
  9.     \If{ $PM_i$ is not a service providing node or checkpoint image storage node of $S_k$ }  
  10.     {  
  11.         add $PM_i$ to $candidateList$ \;  
  12.     }  
  13. }  
  14. sort $candidateList$ by reliability desc\;  
  15. init $storageserver$ ;  
  16. \For{ each $PM_k$ in $candidateList$}  
  17. {  
  18.   
  19.             \If{ $SP(PM_k)$ $\geq$ $E(SP)$ of $pod_i$ and $BM_k$ $\le$ size of $Img$ }  
  20.              {  
  21.                 assign $PM_k$ to $storageserver$\;  
  22.                 goto final\;  
  23.              }  
  24. }  
  25. clear $candidateList$\;  
  26. add all other subnets in $pod_s$ to $netList$\;  
  27. \For{ each subnet $subnet_j$ in $netList$}  
  28. {  
  29.         clear $candidateList$\;  
  30.         \For {each $PM_i$ in $subnet_j$ }  
  31.         {  
  32.             \If{ $PM_i$ is not a service providing node or checkpoint image storage node of $S_k$ }  
  33.             {  
  34.                 add $PM_i$ to $candidateList$\;  
  35.             }  
  36.         }  
  37.     sort all host in $candidateList$ by reliability desc\;  
  38.     \For{ each $PM_k$ in $candidateList$}  
  39.     {  
  40.   
  41.             \If{$SP(PM_k)$ $\geq$ $E(SP)$ of $pod_i$ and $BM_k$ $\le$ size of $Img$}  
  42.             {  
  43.                 assign $PM_k$ to $storageserver$ \;  
  44.                 goto final\;  
  45.             }  
  46.     }  
  47. }  
  48. \textbf{final} \;  
  49. \textbf{return} $storageserver$;  
  50. \end{algorithm}  


example 4

Latex写算法的伪代码排版_第9张图片
代码:
[plain]  view plain  copy
 
  1. \begin{algorithm}  
  2. \caption{Delta checkpoint image storage node and routing path selection}  
  3. \LinesNumbered  
  4. \KwIn{host server $PM_s$ that generates the delta checkpoint image $DImg_{kt}$, $subnet_s$ that $PM_s$ belongs to, $pod_s$ that $PM_s$ belongs to}  
  5. \KwOut{Delta image storage server $storageserver$,and the image transfer path $Path$}  
  6. $storageserver$ = Storage node selection($PM_s$, $DImg_{kt}$,$subnet_s$,$pod_s$)\;  
  7. \If{ $storageserver$ $\equiv$ null}  
  8. {  
  9.      the delta checkpoint image is stored in the central storage server\;  
  10.      goto final\;  
  11. }  
  12. construct weighted topological graph $graph_s$ of $pod_s$\;  
  13. calculate the shortest path from $storageserver$ to $PM_s$ in $graph_s$ by using the Dijkstra algorithm\;  
  14. \textbf{final} \;  
  15. \textbf{return} $storageserver$ and $path$;  
  16. \end{algorithm}  


example 5
Latex写算法的伪代码排版_第10张图片
[plain]  view plain  copy
 
  1. \documentclass[8pt,twocolumn]{ctexart}  
  2. \usepackage{amssymb}  
  3. \usepackage{bm}  
  4. \usepackage{textcomp} %命令\textacutedbl的包,二阶导符号  
  5.   
  6. % Page length commands go here in the preamble  
  7. \setlength{\oddsidemargin}{-0.25in} % Left margin of 1 in + 0 in = 1 in  
  8. \setlength{\textwidth}{9in}   % 纸张宽度Right margin of 8.5 in - 1 in - 6.5 in = 1 in  
  9. \setlength{\topmargin}{-.75in}  % Top margin of 2 in -0.75 in = 1 in  
  10. \setlength{\textheight}{9.2in}  % Lower margin of 11 in - 9 in - 1 in = 1 in  
  11. \setlength{\parindent}{0in}  
  12.   
  13.   
  14. \makeatletter  
  15. \newif\if@restonecol  
  16. \makeatother  
  17. \let\algorithm\relax  
  18. \let\endalgorithm\relax  
  19. \usepackage[linesnumbered,ruled,vlined]{algorithm2e}%[ruled,vlined]{  
  20. \usepackage{algpseudocode}  
  21. \renewcommand{\algorithmicrequire}{\textbf{Input:}}   
  22. \renewcommand{\algorithmicensure}{\textbf{Output:}}   
  23.   
  24. \begin{document}  
  25.   
  26. \begin{algorithm}  
  27. \caption{component matrices computing}  
  28. \LinesNumbered  
  29. \KwIn{$\mathcal{X}\in\mathbb{R}^{l_1\times l_2\times\cdots\times l_N},\varepsilon,\lambda,\delta,R$}  
  30. \KwOut{$A^{(j)}s$ for $j=1$ to $N$}  
  31. \textbf{Initialize} all $A^{(j)}s$ //which can be seen as the $0^{th}$ round iterations\;  
  32.   
  33. {$l$\hspace*{-1pt}\textacutedbl}$=L$ //if we need to judge whether $(11)$ is true then {$l$\hspace*{-1pt}\textacutedbl} denotes $L|_{t-1}$\;  
  34.   
  35. \For{ each $A_{i_jr}^{{j}}(1\le j\le N,1\le i_j\le I_j,1\le r\le R)$ }  
  36. {//$1^{st}$ round iterations\;  
  37.     $g_{i_jr}^{(j)'}=g_{i_jr}^{(j)}$\;  
  38.     $A_{i_jr}^{(j)'}=A_{i_jr}^{(j)}$//if the rollback shown as $(12)$ is needed,$A_{i_jr}^{(j)'}$ denotes $A_{i_jr}^{(j)}|_{t-1}$\;  
  39.     $A_{i_jr}^{(j)}=A_{i_jr}^{(j)}-\mathrm{{\bf sign}}\left(g_{i_jr}^{(j)}\right)\cdot\delta_{i_jr}^{(j)}$\;  
  40. }  
  41.   
  42. \Repeat(//other rounds of iterations for computing component matrices){$\bm{L\le \varepsilon}$ or maximum iterations exhausted}  
  43. {  
  44.     $l'=L$ //if we need to judge whether $(11)$ is true then $l'$ denotes $L|_t$\;  
  45.     \For{ each $A_{i_jr}^{{j}}(1\le j\le N,1\le i_j\le I_j,1\le r\le R)$}  
  46.     {  
  47.         \If{$g_{i_jr}^{(j)}\cdot g_{i_jr}^{(j)'}>0$}  
  48.         {  
  49.                 $A_{i_jr}^{(j)'}=A_{i_jr}^{(j)} $\;  
  50.                 $g_{i_jr}^{(j)'}=g_{i_jr}^{(j)} $\;  
  51.                 $\delta_{i_jr}^{(j)}=\bm{\min}\left(\delta_{i_jr}^{(j)}\cdot\eta^{+},Max\_Step\_Size\right)$\;  
  52.                 $A_{i_jr}^{(j)}=A_{i_jr}^{(j)}-\mathrm{{\bf sign}}\left(g_{i_jr}^{(j)}\right)\cdot\delta_{i_jr}^{(j)}$\;  
  53.         }  
  54.         \ElseIf{$g_{i_jr}^{(j)}\cdot g_{i_jr}^{(j)'}<0$}  
  55.         {  
  56.             \If{$l'>l$\hspace*{-1pt}\textacutedbl}  
  57.             {  
  58.                 $g_{i_jr}^{(j)'}=g_{i_jr}^{(j)}$\;  
  59.                 $A_{i_jr}^{(j)}=A_{i_jr}^{(j)'}$// if $(11)$ is true then rollback as $(12)$\;  
  60.                 $\delta_{i_jr}^{(j)}=\bm{\max}\left(\delta_{i_jr}^{(j)}\times\eta^{-},Min\_Step\_Size\right)$\;  
  61.             }  
  62.             \Else  
  63.             {  
  64.                 $A_{i_jr}^{(j)'}=A_{i_jr}^{(j)} $\;  
  65.                 $g_{i_jr}^{(j)'}=g_{i_jr}^{(j)} $\;  
  66.                 $\delta_{i_jr}^{(j)}=\bm{\max}\left(\delta_{i_jr}^{(j)}\cdot\eta^{-},Min\_Step\_Size\right)$\;  
  67.                 $A_{i_jr}^{(j)}=A_{i_jr}^{(j)}-\mathrm{{\bf sign}}\left(g_{i_jr}^{(j)}\right)\cdot\delta_{i_jr}^{(j)}$\;  
  68.             }  
  69.         }  
  70.         \Else  
  71.         {  
  72.                 $A_{i_jr}^{(j)'}=A_{i_jr}^{(j)} $\;  
  73.                 $g_{i_jr}^{(j)'}=g_{i_jr}^{(j)} $\;  
  74.                 $A_{i_jr}^{(j)}=A_{i_jr}^{(j)}-\mathrm{{\bf sign}}\left(g_{i_jr}^{(j)}\right)\cdot\delta_{i_jr}^{(j)}$\;  
  75.         }  
  76.     }  
  77.     $l$\hspace*{-1pt}\textacutedbl$=l'$\;  
  78. }  
  79. \end{algorithm}  
  80. \end{document}  


example 6

Latex写算法的伪代码排版_第11张图片
[plain]  view plain  copy
 
  1. \usepackage[ruled,linesnumbered]{algorithm2e}  
  2. \usepackage{amsmath}  
  3.   
  4. \begin{algorithm}  
  5.     \caption{Learning algorithm of R2P}  
  6.     \label{alg:r2p}  
  7.     \KwIn{ratings $R$, joint demographic representations $Y$,learning rate $\eta$,maximum iterative number $maxIter$, negative sampling number $k$\;}  
  8.     \KwOut{interaction matrix $\bm{W}$, movie vectors $V$\;}  
  9.     Initialize $\bm{W},V$ randomly\;  
  10.     $t = 0$\;  
  11.     For convenience, define $\vec{\varphi}_n = \sum_{m\in S_n}r_{m,n}\vec{v}_m$\; %\varphi_n\bm{W}\vec{y}_n  
  12.     \While{not converged \rm{or} $t>maxIter$}  
  13.     {  
  14.       t = t+1\;  
  15.       \For{$n=1;n \le N;n++$}  
  16.       {  
  17.         $\bm{W} = \bm{W}+\eta\big(1-\sigma\left(\vec{\varphi}_n^T\bm{W}\vec{y}_n\right)\big)\vec{\varphi}_n\vec{y}_n^T$\;\label{algline:W}  
  18.         \For{$m\in S_n$}  
  19.         {  
  20.             $\vec{v}_m=\vec{v}_m+ \eta\left(1-\sigma\left(\vec{\varphi}_n^T\bm{W}\vec{y}_n\right)\right)r_{m,n}\bm{W}\vec{y}_n$\;\label{algline:V}  
  21.         }  
  22.         \For{$i=1;i\le k;i++$}  
  23.         {  
  24.             sample negative sample $\vec{y}_i$ from $P_n$\;  
  25.             $\bm{W} = \bm{W}-\eta\big(1-\sigma\left(-\vec{\varphi}_n^T\bm{W}\vec{y}_n\right)\big)\vec{\varphi}_n\vec{y}_i^T$\;  
  26.             \For{$m\in S_n$}  
  27.             {  
  28.                 $\vec{v}_m=\vec{v}_m- \eta\left(1-\sigma\left(-\vec{\varphi}_n^T\bm{W}\vec{y}_n\right)\right)r_{m,n}\bm{W}\vec{y}_i$\;  
  29.             }  
  30.         }  
  31.       }  
  32.       $\bm{W} = \bm{W}-2\lambda\eta\bm{W}$\;  
  33.       $V=V-2\lambda\eta V$  
  34.     }  
  35.     return $\bm{W},V$\;  
  36.     %\end{algorithmic}  
  37. \end{algorithm}  

你可能感兴趣的:(ns2)