- Organize Data for Faster Insight
SEO-狼术
netDelphi控件java
OrganizeDataforFasterInsightSortingfunctionalityallowsspreadsheetuserstobringstructuretolargedatasetsbyarrangingrowsbasedonselectedcolumnvalues.Datasortinginaspreadsheetcontrolisafundamentalfeaturetha
- Gantt charts map tasks Crack
SEO-狼术
Delphinet控件.net
GanttchartsmaptasksCrackGanttchartsmaptasksovertime,helpingteamsmanageschedules,spotconflicts,andmaintainvisibilityacrosscomplexprojecttimelines.AGanttchartisavisualprojectmanagementtoolthatdisplaysta
- 【ICLR 2022】时序精选论文08|Pyraformer: 基于金字塔注意力机制与多尺度辨识卷积的时间序列预测模型(代码解读附源码)
OverOnEarth
时间序列预测项目实战人工智能机器学习深度学习python算法
ICLR2022PYRAFORMER:LOW-COMPLEXITYPYRAMIDALAT-TENTIONFORLONG-RANGETIMESERIESMODELINGANDFORECASTINGPyraformer要解决的问题基于时间序列数据面临的挑战:建立一个灵活但简约的模型,能够捕获不同范围的时间依赖性。时间序列通常表现为短期和长期的重复模式,将他们考虑在内是准确预测的关键。即能够获得一个同时
- 《设计模式之禅》笔记摘录 - 3.工厂方法模式
使二颗心免于哀伤
《设计模式之禅》笔记摘录设计模式笔记工厂方法模式
工厂方法模式的定义工厂方法模式使用的频率非常高,在我们日常的开发中总能见到它的身影。其定义为:Defineaninterfaceforcreatinganobject,butletsubclassesdecidewhichclasstoinstantiate..FactoryMethodletsaclassdeferinstantiationtosubclasses.(定义一个用于创建对象的接口,
- 深度探索:机器学习中的 条件生成对抗网络(Conditional GAN, CGAN)算法原理及其应用
目录1.引言与背景2.CGAN定理3.算法原理4.算法实现5.优缺点分析优点:缺点:6.案例应用7.对比与其他算法8.结论与展望1.引言与背景生成对抗网络(GenerativeAdversarialNetworks,GANs)作为一种深度学习框架,在无监督学习领域展现出强大的能力,特别在图像、音频、文本等复杂数据的生成任务中取得了显著成果。然而,原始GAN模型在生成过程中缺乏对生成样本特定属性的直
- PyTorch实战(13)——WGAN详解与实现
盼小辉丶
pytorch人工智能python
PyTorch实战(13)——WGAN详解与实现0.前言1.WGAN与梯度惩罚2.WGAN工作原理2.1Wasserstein损失2.2Lipschitz约束2.3强制Lipschitz约束3.实现WGAN3.1数据加载与处理3.2模型构建3.3模型训练小结系列链接0.前言生成对抗网络(GenerativeAdversarialNetwork,GAN)模型训练过程通常会面临一些问题,如模式崩溃(生
- ART(Automatic Reasoning and Tool-use):自动推理与工具使用的革命性突破
引言在人工智能快速发展的今天,大语言模型(LLM)的能力边界正在不断被重新定义。ART(AutomaticReasoningandTool-use)技术作为一项革命性的突破,为AI系统提供了自动推理并使用外部工具的能力,这标志着我们正在迈向更加智能和实用的AI时代。什么是ART技术?ART是AutomaticReasoningandTool-use的缩写,它是一种让AI系统能够自动进行推理并调用外
- Python网络爬虫与数据处理工具大全:从入门到精通
俞凯润
Python网络爬虫与数据处理工具大全:从入门到精通awesome-web-scrapingListoflibraries,toolsandAPIsforwebscrapinganddataprocessing.项目地址:https://gitcode.com/gh_mirrors/aw/awesome-web-scraping本文基于知名Python网络爬虫资源库lorien/awesome-w
- 第G1周:生成对抗网络(GAN)入门
本文为365天深度学习训练营原作者:K同学啊基础任务:1.了解什么是生成对抗网络2.生成对抗网络结构是怎么样的3.学习本文代码,并跑通代码进阶任务:调用训练好的模型生成新图像一、理论基础生成对抗网络(GenerativeAdversarialNetworks,GAN)是近年来深度学习领域的一个热点方向。GAN并不指代某一个具体的神经网络,而是指一类基于博弈思想而设计的神经网络。GAN由两个分别被称
- 匹配一切 学习笔记2025
AI算法网奇
python宝典计算机视觉人工智能
目录匹配一切MASAdemo:图像匹配roma匹配一切MASAMatchingAnythingBySegmentingAnything[CVPR24Highlight]git地址:https://github.com/siyuanliii/masaMethodBaseNovelmodelTETAAssocATETAAssocAOVTrack(CVPR23)35.536.927.833.6-<
- 要完成使用MLflow比较模型运行、选择模型并将其部署到REST API的教程
大霸王龙
python人工智能python机器学习mlflow
要完成使用MLflow比较模型运行、选择模型并将其部署到RESTAPI的教程,请按照以下有序步骤操作:设置环境导出MLflow跟踪URI:设置环境变量以指向您的MLflow跟踪服务。exportMLFLOW_TRACKING_URI=your-organization's-MLflow-server-url加载数据和预处理读取数据集:使用pandas读取包含数据集的CSV文件。importpand
- 数据仓库 实时计算_如果您的云数据仓库没有分开存储和计算,为什么您会浪费金钱...
weixin_26631359
pythonjava大数据算法leetcode
数据仓库实时计算Notsolongago,establishinganenterprisedatawarehouseinvolvedaprojectthatwouldtakemonthsorevenyears.Thesedays,withcloudcomputing,youcaneasilyregisterforaSaaSorPaaSofferingprovidedbyoneofthecloudv
- kedro-mlflow 项目教程
薄琼茵Angelic
kedro-mlflow项目教程kedro-mlflowAkedro-pluginforintegrationofmlflowcapabilitiesinsidekedroprojects(especiallymachinelearningmodelversioningandpackaging)项目地址:https://gitcode.com/gh_mirrors/ke/kedro-mlflow1
- CppCon 2018 学习:From Metaprogramming Tricks to Elegance
#这段内容是VincentReverdy在CppCon2018演讲的一部分,核心主题是:这场演讲的核心问题是:如何在C++17中提高代码的通用性(Genericity),而不牺牲代码的可读性与简洁性?具体要解决的问题是:你希望写出既通用又可维护的模板代码。换句话说,你希望能像这样思考和写代码:如果满足某个条件,就执行这个函数:if(some_condition){do_this();}让编译器自动
- 2025年智能计算与人机交互国际会议(ICHCI 2025)
2025InternationalConferenceonIntelligentComputingandHumanComputerInteraction【一】、大会信息会议简称:ICHCI2025大会地点:中国·温州收录检索:提交EiCompendex,CPCI,CNKI,GoogleScholar等【二】、会议简介2025年智能计算与人机交互国际会议将在中国温州隆重召开。旨在为全球从事大数据、人
- 使用NPM安装Highcharts的完整指南
祁泉望Ernestine
使用NPM安装Highcharts的完整指南highcharts项目地址:https://gitcode.com/gh_mirrors/high/highcharts前言Highcharts作为一款功能强大的数据可视化库,在现代Web开发中扮演着重要角色。本文将详细介绍如何通过NPM包管理器来安装和使用Highcharts及其相关产品(Stock、Maps和Gantt),帮助开发者快速上手这一优秀
- 数字人视频剪辑与数字人分身源码开发的的核心技术解析
微~18339948121
数字人分身源码数字人剪辑源码数字人源码djangopygamevirtualenvplotlyscikit-learnflasktornado
数字人视频剪辑与分身的核心技术解析数字人视频剪辑和分身技术是近年来人工智能与计算机视觉领域的热点,涉及虚拟形象生成、动作驱动、语音合成等多项技术。以下从技术实现、应用场景和工具选择三个方面展开分析。数字人视频剪辑的关键技术视频剪辑中数字人的核心在于动态形象的生成与编辑。基于深度学习的生成对抗网络(GAN)和3D建模技术可实现高保真虚拟形象构建。典型流程包括:人物建模:通过多视角图像或视频数据重建3
- Python Day53
别勉.
python机器学习python开发语言
Task:1.对抗生成网络的思想:关注损失从何而来2.生成器、判别器3.nn.sequential容器:适合于按顺序运算的情况,简化前向传播写法4.leakyReLU介绍:避免relu的神经元失活现象1.对抗生成网络的思想:关注损失从何而来这是理解GANs的关键!传统的神经网络训练中,我们通常会直接定义一个损失函数(如均方误差MSE、交叉熵CE),然后通过反向传播来优化这个损失。这个损失的“来源”
- .wgt 是一种用于打包 Web 应用的标准格式,主要应用于 W3C Widgets 规范中。它是一种轻量级的打包方式,特别适用于移动设备和嵌入式系统中的小型 Web 应用程序
爱的叹息
开发运维架构前端
.wgt是一种用于打包Web应用的标准格式,主要应用于W3CWidgets规范中。它是一种轻量级的打包方式,特别适用于移动设备和嵌入式系统中的小型Web应用程序。一、什么是.wgt包?.wgt是一个压缩包(本质是ZIP格式),包含运行一个Widget所需的所有资源文件。它遵循W3C的WidgetsPackagingandConfiguration规范。可以被支持的平台(如某些手机操作系统、车载系统
- 【大模型学习 | BLIP原理】
九年义务漏网鲨鱼
pytorch人工智能深度学习大模型多模态
BLIP:BootstrappingLanguage-ImagePre-trainingforUnifiedVision-LanguageUnderstandingandGeneration作者指出,现有的视觉-语言预训练(Vision-LanguagePre-training,VLP)模型在语言理解与生成任务上难以同时取得优异表现:一方面,基于编码器(encoder-based)的模型在生成任务
- 脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)
Brduino脑机接口技术答疑
脑机新手指南脑机接口算法人工智能新手入门
一、OpenBCI_GUI项目概述(一)项目背景与目标OpenBCI是一个开源的脑电信号采集硬件平台,其配套的OpenBCI_GUI则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言,首次接触OpenBCI设备时,往往面临数据可视化、实时处理及跨平台兼容性等挑战。OpenBCI_GUI的核心目标是为所有OpenBCI设备(包括Ganglion、Cyton及CytonwithDais
- 《ChromaGAN》论文简读及demo运行(萌新手记)
kkpeach
学习手记python机器学习计算机视觉
论文题目:《ChromaGAN:AdversarialPictureColorizationwithSemanticClassDistribution》《具有语义类别分布的对抗图片着色》论文地址:https://arxiv.org/pdf/1907.09837.pdf源码地址:https://github.com/pvitoria/ChromaGAN声明:仅学习用途。这是WACV2020收录的一篇
- 双指针算法-day12(判断子序列)
拾零吖
力扣算法leetcode数据结构
1.判断子序列题目解析字符相等:双指针一起动,不相等:长字符串指针动;代码classSolution{public:boolisSubsequence(strings,stringt){//时间复杂度:O(m)//空间复杂度:O(1)intn=s.size(),m=t.size();inti=0,j=0;while(i&dictionary){stringans="";intn=ans.size(
- PAT A 1057 Stack
Stackisoneofthemostfundamentaldatastructures,whichisbasedontheprincipleofLastInFirstOut(LIFO).Thebasicoper‐ationsincludePush(insertinganelementontothetopposition)andPop(deletingthetopelement).Nowyouar
- Leetcode-423. Reconstruct Original Digits from English
K_W
算法javaleetcode算法
前言:为了后续的实习面试,开始疯狂刷题,非常欢迎志同道合的朋友一起交流。因为时间比较紧张,目前的规划是先过一遍,写出能想到的最优算法,第二遍再考虑最优或者较优的方法。如有错误欢迎指正。博主首发CSDN,mcf171专栏。博客链接:mcf171的博客——————————————————————————————Givenanon-emptystringcontaininganout-of-orderE
- LeetCode423. Reconstruct Original Digits from English
tigerhuli
LeetCode
Givenanon-emptystringcontaininganout-of-orderEnglishrepresentationofdigits0-9,outputthedigitsinascendingorder.Note:InputcontainsonlylowercaseEnglishletters.Inputisguaranteedtobevalidandcanbetransforme
- LeetCode 423. Reconstruct Original Digits from English 解题报告
骆小坑
编程解题leetcode
LeetCode423.ReconstructOriginalDigitsfromEnglish解题报告题目描述Givenanon-emptystringcontaininganout-of-orderEnglishrepresentationofdigits0-9,outputthedigitsinascendingorder.InputcontainsonlylowercaseEnglishl
- Leetcode 423. Reconstruct Original Digits from English
小白菜又菜
Leetcode解题报告leetcodelinux算法
ProblemGivenastringscontaininganout-of-orderEnglishrepresentationofdigits0-9,returnthedigitsinascendingorder.AlgorithmCounttheoccurrencesofcharactersbasedonuniqueletters—forexample,theletter‘z’onlyapp
- [2025CVPR]DE-GANs:一种高效的生成对抗网络
清风AI
深度学习算法详解及代码复现生成对抗网络人工智能神经网络
目录引言:数据高效GAN的困境核心原理:动态质量筛选机制1.判别器拒绝采样(DRS)的再思考2.质量感知动态拒绝公式(1)质量感知阶段(2)动态拒绝阶段模型架构:轻量化设计技术突破:三大创新点1.首创训练阶段DRS2.动态拒绝机制3.质量重加权策略实验验证:全面性能提升1.数据集与指标2.对比实验结果(1)低样本数据集(2)FFHQ数据集代码解析:关键实现细节对比结果:全面超越现有方法1.低样本数
- StackGAN(堆叠生成对抗网络)的介绍
简介简介:本文提出了StackGAN(堆叠生成对抗网络),解决从文本描述生成高分辨率照片级真实图像的挑战。该方法将复杂的生成任务分解为两个阶段:Stage-IGAN生成64×64的粗糙轮廓和基本颜色,Stage-IIGAN基于Stage-I结果和文本描述生成256×256的高分辨率图像并修正缺陷。同时引入条件增强技术提高训练稳定性和样本多样性。论文题目:StackGAN:TexttoPhoto-r
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc