- 【Python系列】高效Parquet数据处理策略:合并与分析实践
小团团0
python开发语言
在大数据时代,数据的存储、处理和分析变得尤为重要。Parquet作为一种高效的列存储格式,被广泛应用于大数据处理框架中,如ApacheSpark、ApacheHive等。Parquet是一个开源的列存储格式,它被设计用于支持复杂的嵌套数据结构,同时提供高效的压缩和编码方案,以优化存储空间和查询性能。以下将详细介绍如何使用Python对Parquet文件进行数据处理与合并,并提供相应的源码示例。一、
- spark explain如何使用
fzip
Sparkspark执行计划
在Spark中,explain是分析SQL或DataFrame执行计划的核心工具,通过不同模式可展示查询优化和执行的详细信息,默认情况下,这个语句只提供关于物理计划的信息。以下是具体使用方法及不同模式的作用:1.explain的基本语法在Spark3.0及以上版本,explain支持多种模式参数,通过mode指定输出格式:#DataFrame调用方式df.explain(mode="simple"
- 【Spark】查询优化中分区(Partitioning)和分桶(Bucketing)是什么关系?什么时候应当分区,什么时候应当分桶?
petrel2015
spark大数据分布式数据库
在学习Spark的过程中,分区和分桶乍一看很像,都能为了计算加速,但是仔细一想,一查还是有些差异的,甚至说差异很大。那么具体有什么差异点,有什么相同点。我做出了如下的整理,供大家参考,欢迎指正。相同点分区(Partitioning)和分桶(Bucketing)在很多方面具有相似性,它们都是用于优化大数据查询性能的技术数据划分的目的:优化查询性能分区和分桶的核心目标是通过将数据分割成更小的逻辑单元来
- pyspark学习rdd处理数据方法——学习记录
亭午
学习
python黑马程序员"""文件,按JSON字符串存储1.城市按销售额排名2.全部城市有哪些商品类别在售卖3.上海市有哪些商品类别在售卖"""frompysparkimportSparkConf,SparkContextimportosimportjsonos.environ['PYSPARK_PYTHON']=r"D:\anaconda\envs\py10\python.exe"#创建Spark
- 数据湖Iceberg、Hudi和Paimon比较_数据湖框架对比(1)
2301_79098963
程序员知识图谱人工智能
4.Schema变更支持对比项ApacheIcebergApacheHudiApachePaimonSchemaEvolutionALLback-compatibleback-compatibleSelf-definedschemaobjectYESNO(spark-schema)NO(我理解,不准确)SchemaEvolution:指schema变更的支持情况,我的理解是hudi仅支持添加可选列
- Apache大数据旭哥优选大数据选题
Apache大数据旭
大数据定制选题javahadoopspark开发语言ideahive数据库架构
定制旭哥服务,一对一,无中介包安装+答疑+售后态度和技术都很重要定制按需求做要求不高就实惠一点定制需提前沟通好怎么做,这样才能避免不必要的麻烦python、flask、Django、mapreduce、mysqljava、springboot、vue、echarts、hadoop、spark、hive、hbase、flink、SparkStreaming、kafka、flume、sqoop分析+推
- Azure Delta Lake、Databricks和Event Hubs实现实时欺诈检测
weixin_30777913
azure云计算
设计Azure云架构方案实现AzureDeltaLake和AzureDatabricks,结合AzureEventHubs/Kafka摄入实时数据,通过DeltaLake实现Exactly-Once语义,实时欺诈检测(流数据写入DeltaLake,批处理模型实时更新),以及具体实现的详细步骤和关键PySpark代码。完整实现代码需要根据具体数据格式和业务规则进行调整,建议通过DatabricksR
- 探索数据安全新境界:Apache Spark SQL Ranger Security插件深度揭秘
乌昱有Melanie
探索数据安全新境界:ApacheSparkSQLRangerSecurity插件深度揭秘项目地址:https://gitcode.com/gh_mirrors/sp/spark-ranger随着大数据的爆炸性增长,数据安全性成为了企业不可忽视的核心议题。在这一背景下,【ApacheSparkSQLRangerSecurityPlugin】以其强大的数据访问控制能力脱颖而出,成为数据处理领域的明星级
- 基于Azure云平台构建实时数据仓库
weixin_30777913
云计算azure开发语言sparkpython
设计Azure云架构方案实现AzureDeltaLake和AzureDatabricks,结合电商网站的流数据,构建实时数据仓库,支持T+0报表(如电商订单分析),具以及具体实现的详细步骤和关键PySpark代码。一、架构设计[电商网站]→[AzureEventHubs]→[AzureDatabricksStreaming]↓[AzureDeltaLake]←→[DatabricksSQLAnal
- 优化Apache Spark性能之JVM参数配置指南
weixin_30777913
jvmspark大数据开发语言性能优化
ApacheSpark运行在JVM之上,JVM的垃圾回收(GC)、内存管理以及堆外内存使用情况,会直接对Spark任务的执行效率产生影响。因此,合理配置JVM参数是优化Spark性能的关键步骤,以下将详细介绍优化策略和配置建议。通过以下优化方法,可以显著减少GC停顿时间、提升内存利用率,进而提高Spark作业吞吐量和数据处理效率。同时,要根据具体的工作负载和集群配置进行调整,并定期监控Spark应
- GraphCube、Spark和深度学习技术赋能快消行业关键运营环节
weixin_30777913
开发语言大数据深度学习人工智能spark
在快消品(FMCG)行业,需求计划(DemandPlanning)、库存管理(InventoryManagement)和需求供应管理(DemandSupplyManagement)是影响企业整体效率和利润水平的关键运营环节。GraphCube图多维数据集技术、Spark大数据分析处理技术和深度学习技术的结合,为这些环节提供了智能化、动态化和实时化的解决方案,显著提升业务运营效率和企业利润。一、技术
- 【新品发售】NVIDIA 发布全球最小个人 AI 超级计算机 DGX Spark
segmentfault
GTC2025大会上,NVIDIA正式推出了搭载NVIDIAGraceBlackwell平台的个人AI超级计算机——DGXSpark。赞奇可接受预订,直接私信后台即刻预订!DGXSpark(前身为ProjectDIGITS)支持AI开发者、研究人员、数据科学家和学生,在台式电脑上对大模型进行原型设计、微调和推理。用户可以在本地运行这些模型,或将其部署在NVIDIADGXCloud或任何其他加速云或
- Kafka Connect Node.js Connector 指南
丁操余
KafkaConnectNode.jsConnector指南kafka-connectequivalenttokafka-connect:wrench:fornodejs:sparkles::turtle::rocket::sparkles:项目地址:https://gitcode.com/gh_mirrors/ka/kafka-connect项目介绍KafkaConnectNode.jsConn
- JAVA学习-练习试用Java实现“对大数据集中的网络日志进行解析和异常行为筛查”
守护者170
java学习java学习
问题:编写一个Spark程序,对大数据集中的网络日志进行解析和异常行为筛查。解答思路:下面是一个简单的Spark程序示例,用于解析网络日志并筛查异常行为。这个示例假设日志文件格式如下:timestamp,ip_address,user_id,action,event,extra_info2023-01-0112:00:00,192.168.1.1,123,login,success,none202
- JAVA学习-练习试用Java实现“实现一个Spark应用,对大数据集中的文本数据进行情感分析和关键词筛选”
守护者170
java学习java学习
问题:实现一个Spark应用,对大数据集中的文本数据进行情感分析和关键词筛选。解答思路:要实现一个Spark应用,对大数据集中的文本数据进行情感分析和关键词筛选,需要按照以下步骤进行:1.环境准备确保的环境中已经安装了ApacheSpark。可以从[ApacheSpark官网](https://spark.apache.org/downloads.html)下载并安装。2.创建Spark应用以下是
- Hive与Spark的UDF:数据处理利器的对比与实践
窝窝和牛牛
hivesparkhadoop
文章目录Hive与Spark的UDF:数据处理利器的对比与实践一、UDF概述二、HiveUDF解析实现原理代码示例业务应用三、SparkUDF剖析-JDBC方式使用SparkThriftServer设置通过JDBC使用UDFSparkUDF的Java实现(用于JDBC方式)通过beeline客户端连接使用业务应用场景四、Hive与SparkUDF在JDBC模式下的对比五、实际部署与最佳实践六、总结
- 尚硅谷电商数仓6.0,hive on spark,spark启动不了
新时代赚钱战士
hivesparkhadoop
在datagrip执行分区插入语句时报错[42000][40000]Errorwhilecompilingstatement:FAILED:SemanticExceptionFailedtogetasparksession:org.apache.hadoop.hive.ql.metadata.HiveException:FailedtocreateSparkclientforSparksessio
- 数据中台(二)数据中台相关技术栈
Yuan_CSDF
#数据中台
1.平台搭建1.1.Amabari+HDP1.2.CM+CDH2.相关的技术栈数据存储:HDFS,HBase,Kudu等数据计算:MapReduce,Spark,Flink交互式查询:Impala,Presto在线实时分析:ClickHouse,Kylin,Doris,Druid,Kudu等资源调度:YARN,Mesos,Kubernetes任务调度:Oozie,Azakaban,AirFlow,
- 一文搞懂大数据神器Spark,真的太牛了!
qq_23519469
大数据spark分布式
Spark是什么在如今这个大数据时代,数据量呈爆炸式增长,传统的数据处理方式已经难以满足需求。就拿电商平台来说,每天产生的交易数据、用户浏览数据、评论数据等,数量巨大且种类繁多。假如要对这些数据进行分析,比如分析用户的购买行为,找出最受欢迎的商品,预测未来的销售趋势等,用普通的单机处理方式,可能需要花费很长时间,甚至根本无法完成。这时,Spark就应运而生了。Spark是一个开源的、基于内存计算的
- Flink读取kafka数据并写入HDFS
王知无(import_bigdata)
Flink系统性学习专栏hdfskafkaflink
硬刚大数据系列文章链接:2021年从零到大数据专家的学习指南(全面升级版)2021年从零到大数据专家面试篇之Hadoop/HDFS/Yarn篇2021年从零到大数据专家面试篇之SparkSQL篇2021年从零到大数据专家面试篇之消息队列篇2021年从零到大数据专家面试篇之Spark篇2021年从零到大数据专家面试篇之Hbase篇
- 元戎启行最新战略RoadAGI:所有移动智能体都将被AI驱动
量子位
2025年3月18日(北京时间),元戎启行作为国内人工智能企业代表,出席由NVIDIA主办的GTC大会。会上,公司CEO周光发表了技术主题演讲,展示了公司的最新战略布局RoadAGI,并发布道路通用人工智能平台——AISpark(以下简称”Spark平台”)。RoadAGI是元戎启行实现物理世界通用人工智能的关键一步,旨在让包括智能驾驶汽车在内的移动智能体,都具有在道路上自主行驶、与物理世界深度交
- SparkSQL编程-RDD、DataFrame、DataSet
早拾碗吧
Sparksparkhadoop大数据sparksql
三者之间的关系在SparkSQL中Spark为我们提供了两个新的抽象,分别是DataFrame和DataSet。他们和RDD有什么区别呢?首先从版本的产生上来看:RDD(Spark1.0)—>Dataframe(Spark1.3)—>Dataset(Spark1.6)如果同样的数据都给到这三个数据结构,他们分别计算之后,都会给出相同的结果。不同是的他们的执行效率和执行方式。在后期的Spark版本中
- How Spark Read Sftp Files from Hadoop SFTP FileSystem
IT•轩辕
CloudyComputationsparkhadoop大数据
GradleDependenciesimplementation('org.apache.spark:spark-sql_2.13:3.5.3'){excludegroup:"org.apache.logging.log4j",module:"log4j-slf4j2-impl"}implementation('org.apache.hadoop:hadoop-common:3.3.4'){exc
- pyspark 遇到**Py4JJavaError** Traceback (most recent call last) ~\AppData\
2pi
sparkpython
Py4JJavaErrorTraceback(mostrecentcalllast)~\AppData\Local\Temp/ipykernel_22732/1401292359.pyin---->1feat_df.show(5,vertical=True)D:\Anaconda3\envs\recall-service-cp4\lib\site-packages\pyspark\sql\data
- 中电金信25/3/18面前笔试(需求分析岗+数据开发岗)
苍曦
需求分析前端javascript
部分相同题目在第二次数据开发岗中不做解析,本次解析来源于豆包AI,正确与否有待商榷,本文只提供一个速查与知识点的补充。一、需求分析第1题,单选题,Hadoop的核心组件包括HDFS和以下哪个?MapReduceSparkStormFlink解析:Hadoop的核心组件是HDFS(分布式文件系统)和MapReduce(分布式计算框架)。Spark、Storm、Flink虽然也是大数据处理相关技术,但
- Spark集群启动与关闭
陈沐
sparksparkhadoopbigdata
Hadoop集群和Spark的启动与关闭Hadoop集群开启三台虚拟机均启动ZookeeperzkServer.shstartMaster1上面执行启动HDFSstart-dfs.shslave1上面执行开启YARNstart-yarn.shslave2上面执行开启YARN的资源管理器yarn-daemon.shstartresourcemanager(如果nodeManager没有启动(正常情况
- Spark 解析_spark.sparkContext.getConf().getAll()
闯闯桑
spark大数据分布式
spark.sparkContext.getConf().getAll()是ApacheSpark中的一段代码,用于获取当前Spark应用程序的所有配置项及其值。以下是逐部分解释:代码分解:spark:这是一个SparkSession对象,它是Spark应用程序的入口点,用于与Spark集群进行交互。spark.sparkContext:sparkContext是Spark的核心组件,负责与集群通
- Pandas与PySpark混合计算实战:突破单机极限的智能数据处理方案
Eqwaak00
Pandaspandas学习python科技开发语言
引言:大数据时代的混合计算革命当数据规模突破十亿级时,传统单机Pandas面临内存溢出、计算缓慢等瓶颈。PySpark虽能处理PB级数据,但在开发效率和局部计算灵活性上存在不足。本文将揭示如何构建Pandas+PySpark混合计算管道,在保留Pandas便捷性的同时,借助Spark分布式引擎实现百倍性能提升,并通过真实电商用户画像案例演示全流程实现。一、混合架构设计原理1.1技术栈优势分析维度P
- 自定义Spark启动的metastore_db和derby.log生成路径
节昊文
spark大数据分布式
1.进入安装spark目录的conf目录下2.复制spark-defaults.conf.template文件为spark-defaults.conf3.在spark-defaults.conf文件的末尾添加一行:spark.driver.extraJavaOptions-Dderby.system.home=/log即生成的文件存放的目录
- 介绍 Apache Spark 的基本概念和在大数据分析中的应用
佛渡红尘
apache
ApacheSpark是一个开源的集群计算框架,最初由加州大学伯克利分校的AMPLab开发,用于大规模数据处理和分析。相比于传统的MapReduce框架,Spark具有更快的数据处理速度和更强大的计算能力。ApacheSpark的基本概念包括:弹性分布式数据集(RDD):是Spark中基本的数据抽象,是一个可并行操作的分区记录集合。RDD可以在集群中的节点间进行分布式计算。转换(Transform
- java线程Thread和Runnable区别和联系
zx_code
javajvmthread多线程Runnable
我们都晓得java实现线程2种方式,一个是继承Thread,另一个是实现Runnable。
模拟窗口买票,第一例子继承thread,代码如下
package thread;
public class ThreadTest {
public static void main(String[] args) {
Thread1 t1 = new Thread1(
- 【转】JSON与XML的区别比较
丁_新
jsonxml
1.定义介绍
(1).XML定义
扩展标记语言 (Extensible Markup Language, XML) ,用于标记电子文件使其具有结构性的标记语言,可以用来标记数据、定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言。 XML使用DTD(document type definition)文档类型定义来组织数据;格式统一,跨平台和语言,早已成为业界公认的标准。
XML是标
- c++ 实现五种基础的排序算法
CrazyMizzz
C++c算法
#include<iostream>
using namespace std;
//辅助函数,交换两数之值
template<class T>
void mySwap(T &x, T &y){
T temp = x;
x = y;
y = temp;
}
const int size = 10;
//一、用直接插入排
- 我的软件
麦田的设计者
我的软件音乐类娱乐放松
这是我写的一款app软件,耗时三个月,是一个根据央视节目开门大吉改变的,提供音调,猜歌曲名。1、手机拥有者在android手机市场下载本APP,同意权限,安装到手机上。2、游客初次进入时会有引导页面提醒用户注册。(同时软件自动播放背景音乐)。3、用户登录到主页后,会有五个模块。a、点击不胫而走,用户得到开门大吉首页部分新闻,点击进入有新闻详情。b、
- linux awk命令详解
被触发
linux awk
awk是行处理器: 相比较屏幕处理的优点,在处理庞大文件时不会出现内存溢出或是处理缓慢的问题,通常用来格式化文本信息
awk处理过程: 依次对每一行进行处理,然后输出
awk命令形式:
awk [-F|-f|-v] ‘BEGIN{} //{command1; command2} END{}’ file
[-F|-f|-v]大参数,-F指定分隔符,-f调用脚本,-v定义变量 var=val
- 各种语言比较
_wy_
编程语言
Java Ruby PHP 擅长领域
- oracle 中数据类型为clob的编辑
知了ing
oracle clob
public void updateKpiStatus(String kpiStatus,String taskId){
Connection dbc=null;
Statement stmt=null;
PreparedStatement ps=null;
try {
dbc = new DBConn().getNewConnection();
//stmt = db
- 分布式服务框架 Zookeeper -- 管理分布式环境中的数据
矮蛋蛋
zookeeper
原文地址:
http://www.ibm.com/developerworks/cn/opensource/os-cn-zookeeper/
安装和配置详解
本文介绍的 Zookeeper 是以 3.2.2 这个稳定版本为基础,最新的版本可以通过官网 http://hadoop.apache.org/zookeeper/来获取,Zookeeper 的安装非常简单,下面将从单机模式和集群模式两
- tomcat数据源
alafqq
tomcat
数据库
JNDI(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。
没有使用JNDI时我用要这样连接数据库:
03. Class.forName("com.mysql.jdbc.Driver");
04. conn
- 遍历的方法
百合不是茶
遍历
遍历
在java的泛
- linux查看硬件信息的命令
bijian1013
linux
linux查看硬件信息的命令
一.查看CPU:
cat /proc/cpuinfo
二.查看内存:
free
三.查看硬盘:
df
linux下查看硬件信息
1、lspci 列出所有PCI 设备;
lspci - list all PCI devices:列出机器中的PCI设备(声卡、显卡、Modem、网卡、USB、主板集成设备也能
- java常见的ClassNotFoundException
bijian1013
java
1.java.lang.ClassNotFoundException: org.apache.commons.logging.LogFactory 添加包common-logging.jar2.java.lang.ClassNotFoundException: javax.transaction.Synchronization
- 【Gson五】日期对象的序列化和反序列化
bit1129
反序列化
对日期类型的数据进行序列化和反序列化时,需要考虑如下问题:
1. 序列化时,Date对象序列化的字符串日期格式如何
2. 反序列化时,把日期字符串序列化为Date对象,也需要考虑日期格式问题
3. Date A -> str -> Date B,A和B对象是否equals
默认序列化和反序列化
import com
- 【Spark八十六】Spark Streaming之DStream vs. InputDStream
bit1129
Stream
1. DStream的类说明文档:
/**
* A Discretized Stream (DStream), the basic abstraction in Spark Streaming, is a continuous
* sequence of RDDs (of the same type) representing a continuous st
- 通过nginx获取header信息
ronin47
nginx header
1. 提取整个的Cookies内容到一个变量,然后可以在需要时引用,比如记录到日志里面,
if ( $http_cookie ~* "(.*)$") {
set $all_cookie $1;
}
变量$all_cookie就获得了cookie的值,可以用于运算了
- java-65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
bylijinnan
java
参考了网上的http://blog.csdn.net/peasking_dd/article/details/6342984
写了个java版的:
public class Print_1_To_NDigit {
/**
* Q65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
* 1.使用字符串
- Netty源码学习-ReplayingDecoder
bylijinnan
javanetty
ReplayingDecoder是FrameDecoder的子类,不熟悉FrameDecoder的,可以先看看
http://bylijinnan.iteye.com/blog/1982618
API说,ReplayingDecoder简化了操作,比如:
FrameDecoder在decode时,需要判断数据是否接收完全:
public class IntegerH
- js特殊字符过滤
cngolon
js特殊字符js特殊字符过滤
1.js中用正则表达式 过滤特殊字符, 校验所有输入域是否含有特殊符号function stripscript(s) { var pattern = new RegExp("[`~!@#$^&*()=|{}':;',\\[\\].<>/?~!@#¥……&*()——|{}【】‘;:”“'。,、?]"
- hibernate使用sql查询
ctrain
Hibernate
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import org.hibernate.Hibernate;
import org.hibernate.SQLQuery;
import org.hibernate.Session;
import org.hibernate.Transa
- linux shell脚本中切换用户执行命令方法
daizj
linuxshell命令切换用户
经常在写shell脚本时,会碰到要以另外一个用户来执行相关命令,其方法简单记下:
1、执行单个命令:su - user -c "command"
如:下面命令是以test用户在/data目录下创建test123目录
[root@slave19 /data]# su - test -c "mkdir /data/test123" 
- 好的代码里只要一个 return 语句
dcj3sjt126com
return
别再这样写了:public boolean foo() { if (true) { return true; } else { return false;
- Android动画效果学习
dcj3sjt126com
android
1、透明动画效果
方法一:代码实现
public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState)
{
View rootView = inflater.inflate(R.layout.fragment_main, container, fals
- linux复习笔记之bash shell (4)管道命令
eksliang
linux管道命令汇总linux管道命令linux常用管道命令
转载请出自出处:
http://eksliang.iteye.com/blog/2105461
bash命令执行的完毕以后,通常这个命令都会有返回结果,怎么对这个返回的结果做一些操作呢?那就得用管道命令‘|’。
上面那段话,简单说了下管道命令的作用,那什么事管道命令呢?
答:非常的经典的一句话,记住了,何为管
- Android系统中自定义按键的短按、双击、长按事件
gqdy365
android
在项目中碰到这样的问题:
由于系统中的按键在底层做了重新定义或者新增了按键,此时需要在APP层对按键事件(keyevent)做分解处理,模拟Android系统做法,把keyevent分解成:
1、单击事件:就是普通key的单击;
2、双击事件:500ms内同一按键单击两次;
3、长按事件:同一按键长按超过1000ms(系统中长按事件为500ms);
4、组合按键:两个以上按键同时按住;
- asp.net获取站点根目录下子目录的名称
hvt
.netC#asp.nethovertreeWeb Forms
使用Visual Studio建立一个.aspx文件(Web Forms),例如hovertree.aspx,在页面上加入一个ListBox代码如下:
<asp:ListBox runat="server" ID="lbKeleyiFolder" />
那么在页面上显示根目录子文件夹的代码如下:
string[] m_sub
- Eclipse程序员要掌握的常用快捷键
justjavac
javaeclipse快捷键ide
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 写道 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可
- c++编程随记
lx.asymmetric
C++笔记
为了字体更好看,改变了格式……
&&运算符:
#include<iostream>
using namespace std;
int main(){
int a=-1,b=4,k;
k=(++a<0)&&!(b--
- linux标准IO缓冲机制研究
音频数据
linux
一、什么是缓存I/O(Buffered I/O)缓存I/O又被称作标准I/O,大多数文件系统默认I/O操作都是缓存I/O。在Linux的缓存I/O机制中,操作系统会将I/O的数据缓存在文件系统的页缓存(page cache)中,也就是说,数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。1.缓存I/O有以下优点:A.缓存I/O使用了操作系统内核缓冲区,
- 随想 生活
暗黑小菠萝
生活
其实账户之前就申请了,但是决定要自己更新一些东西看也是最近。从毕业到现在已经一年了。没有进步是假的,但是有多大的进步可能只有我自己知道。
毕业的时候班里12个女生,真正最后做到软件开发的只要两个包括我,PS:我不是说测试不好。当时因为考研完全放弃找工作,考研失败,我想这只是我的借口。那个时候才想到为什么大学的时候不能好好的学习技术,增强自己的实战能力,以至于后来找工作比较费劲。我
- 我认为POJO是一个错误的概念
windshome
javaPOJO编程J2EE设计
这篇内容其实没有经过太多的深思熟虑,只是个人一时的感觉。从个人风格上来讲,我倾向简单质朴的设计开发理念;从方法论上,我更加倾向自顶向下的设计;从做事情的目标上来看,我追求质量优先,更愿意使用较为保守和稳妥的理念和方法。
&