Storm(七)Storm Kafka集成

结构图


Storm(七)Storm Kafka集成_第1张图片

producer产生的message推送到kafka集群的topic中,再由KafkaSpout来订阅该topic中的message,并将获得的message传递给WordSplitBolt处理,WordSplitBolt处理完成后继续将message传递给WordCountBolt来处理,WordCountBolt处理完成之后可以继续往下传递,或者直接推送给kafka集群,让consumer处理。storm集群与kafka集群之间的数据可以双向传递。(kafka和storm集群的搭建网上有很多详细的参考资料,在这里就不赘述了。)

源码


pox.xml

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0modelVersion>

    <groupId>cn.com.dimensoftgroupId>
    <artifactId>storm-kafkaartifactId>
    <version>0.0.1-SNAPSHOTversion>
    <packaging>jarpackaging>

    <name>storm-kafkaname>
    <url>http://maven.apache.orgurl>

    <repositories>
        <repository>
            <id>clojars.orgid>
            <url>http://clojars.org/repourl>
        repository>
    repositories>

    <properties>
        <project.build.sourceEncoding>UTF-8project.build.sourceEncoding>
    properties>

    <dependencies>

        
        <dependency>
            <groupId>org.apache.stormgroupId>
            <artifactId>storm-coreartifactId>
            <version>0.9.5version>
            <scope>providedscope>

        dependency>

        <dependency>
            <groupId>org.twitter4jgroupId>
            <artifactId>twitter4j-streamartifactId>
            <version>3.0.3version>

        dependency>

        <dependency>
            <groupId>commons-collectionsgroupId>
            <artifactId>commons-collectionsartifactId>
            <version>3.2.1version>

        dependency>

        <dependency>
            <groupId>com.google.guavagroupId>
            <artifactId>guavaartifactId>
            <version>13.0version>
        dependency>

        
        <dependency>
            <groupId>org.apache.kafkagroupId>
            <artifactId>kafka_2.10artifactId>
            <version>0.8.2.1version>
            
            <exclusions>
                <exclusion>
                    <groupId>org.slf4jgroupId>
                    <artifactId>slf4j-log4j12artifactId>
                exclusion>
            exclusions>
        dependency>

        
        <dependency>
            <groupId>org.apache.stormgroupId>
            <artifactId>storm-kafkaartifactId>
            <version>0.9.5version>
        dependency>

    dependencies>
project>

注:这里一定要注意将slf4j-log4j12的依赖包去除,否则topology运行的时候本地和集群都会出问题,本地报错信息如下(提交到集群错误信息也类似):

java.lang.NoClassDefFoundError: Could not initialize class org.apache.log4j.Log4jLoggerFactory
    at org.apache.log4j.Logger.getLogger(Logger.java:39) ~[log4j-over-slf4j-1.6.6.jar:1.6.6]
    at kafka.utils.Logging$class.logger(Logging.scala:24) ~[kafka_2.10-0.8.2.1.jar:na]
    at kafka.consumer.SimpleConsumer.logger$lzycompute(SimpleConsumer.scala:30) ~[kafka_2.10-0.8.2.1.jar:na]
    at kafka.consumer.SimpleConsumer.logger(SimpleConsumer.scala:30) ~[kafka_2.10-0.8.2.1.jar:na]
    at kafka.utils.Logging$class.info(Logging.scala:67) ~[kafka_2.10-0.8.2.1.jar:na]
    at kafka.consumer.SimpleConsumer.info(SimpleConsumer.scala:30) ~[kafka_2.10-0.8.2.1.jar:na]
    at kafka.consumer.SimpleConsumer.liftedTree1$1(SimpleConsumer.scala:74) ~[kafka_2.10-0.8.2.1.jar:na]
    at kafka.consumer.SimpleConsumer.kafka$consumer$SimpleConsumer$$sendRequest(SimpleConsumer.scala:68) ~[kafka_2.10-0.8.2.1.jar:na]
    at kafka.consumer.SimpleConsumer.getOffsetsBefore(SimpleConsumer.scala:127) ~[kafka_2.10-0.8.2.1.jar:na]
    at kafka.javaapi.consumer.SimpleConsumer.getOffsetsBefore(SimpleConsumer.scala:79) ~[kafka_2.10-0.8.2.1.jar:na]
    at storm.kafka.KafkaUtils.getOffset(KafkaUtils.java:77) ~[storm-kafka-0.9.5.jar:0.9.5]
    at storm.kafka.KafkaUtils.getOffset(KafkaUtils.java:67) ~[storm-kafka-0.9.5.jar:0.9.5]
    at storm.kafka.PartitionManager.(PartitionManager.java:83) ~[storm-kafka-0.9.5.jar:0.9.5]
    at storm.kafka.ZkCoordinator.refresh(ZkCoordinator.java:98) ~[storm-kafka-0.9.5.jar:0.9.5]
    at storm.kafka.ZkCoordinator.getMyManagedPartitions(ZkCoordinator.java:69) ~[storm-kafka-0.9.5.jar:0.9.5]
    at storm.kafka.KafkaSpout.nextTuple(KafkaSpout.java:135) ~[storm-kafka-0.9.5.jar:0.9.5]
    at backtype.storm.daemon.executor$fn__3371$fn__3386$fn__3415.invoke(executor.clj:565) ~[storm-core-0.9.5.jar:0.9.5]
    at backtype.storm.util$async_loop$fn__460.invoke(util.clj:463) ~[storm-core-0.9.5.jar:0.9.5]
    at clojure.lang.AFn.run(AFn.java:24) [clojure-1.5.1.jar:na]
    at java.lang.Thread.run(Thread.java:745) [na:1.7.0_75]
8789 [Thread-13-kafkaSpout] ERROR backtype.storm.util - Halting process: ("Worker died")
java.lang.RuntimeException: ("Worker died")
    at backtype.storm.util$exit_process_BANG_.doInvoke(util.clj:325) [storm-core-0.9.5.jar:0.9.5]
    at clojure.lang.RestFn.invoke(RestFn.java:423) [clojure-1.5.1.jar:na]
    at backtype.storm.daemon.worker$fn__4694$fn__4695.invoke(worker.clj:493) [storm-core-0.9.5.jar:0.9.5]
    at backtype.storm.daemon.executor$mk_executor_data$fn__3272$fn__3273.invoke(executor.clj:240) [storm-core-0.9.5.jar:0.9.5]
    at backtype.storm.util$async_loop$fn__460.invoke(util.clj:473) [storm-core-0.9.5.jar:0.9.5]
    at clojure.lang.AFn.run(AFn.java:24) [clojure-1.5.1.jar:na]
    at java.lang.Thread.run(Thread.java:745) [na:1.7.0_75]

WordCountTopology


WordCountTopology是程序运行入口,定义了完整的topology以及topology运行的方式,本地或者集群:

package cn.com.dimensoft.storm;

import cn.com.dimensoft.constant.Constant;
import storm.kafka.BrokerHosts;
import storm.kafka.KafkaSpout;
import storm.kafka.SpoutConfig;
import storm.kafka.StringScheme;
import storm.kafka.ZkHosts;
import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.StormSubmitter;
import backtype.storm.generated.AlreadyAliveException;
import backtype.storm.generated.InvalidTopologyException;
import backtype.storm.spout.SchemeAsMultiScheme;
import backtype.storm.topology.TopologyBuilder;
import backtype.storm.tuple.Fields;

/**
 * 
 * class: WordCountTopology
 * package: cn.com.dimensoft.storm
 * author:zxh
 * time: 2015年10月8日 下午2:06:55
 * description:
 */
public class WordCountTopology {

    /**
     * 
     * name:main
     * author:zxh
     * time:2015年10月8日 下午2:07:02
     * description:
     * @param args
     * @throws AlreadyAliveException
     * @throws InvalidTopologyException
     * @throws InterruptedException
     */
    public static void main(String[] args) throws AlreadyAliveException,
            InvalidTopologyException, InterruptedException {

        TopologyBuilder builder = new TopologyBuilder();

        // BrokerHosts接口有2个实现类StaticHosts和ZkHosts,ZkHosts会定时(默认60秒)从ZK中更新brokers的信息,StaticHosts是则不会
        // 要注意这里的第二个参数brokerZkPath要和kafka中的server.properties中配置的zookeeper.connect对应
        // 因为这里是需要在zookeeper中找到brokers znode
        // 默认kafka的brokers znode是存储在zookeeper根目录下
        BrokerHosts brokerHosts = new ZkHosts(Constant.ZOOKEEPER_STRING,
                Constant.ZOOKEEPER_PTAH);

        // 定义spoutConfig
        // 第一个参数hosts是上面定义的brokerHosts
        // 第二个参数topic是该Spout订阅的topic名称
        // 第三个参数zkRoot是存储消费的offset(存储在ZK中了),当该topology故障重启后会将故障期间未消费的message继续消费而不会丢失(可配置)
        // 第四个参数id是当前spout的唯一标识
        SpoutConfig spoutConfig = new SpoutConfig(brokerHosts, //
                Constant.TOPIC, //
                "/" + Constant.TOPIC, //
                "wc");

        // 定义kafkaSpout如何解析数据,这里是将kafka的producer send的数据放入到String
        // 类型的str变量中输出,这个str是StringSchema定义的变量名称
        spoutConfig.scheme = new SchemeAsMultiScheme(new StringScheme());

        // 设置spout
        builder.setSpout("kafkaSpout", new KafkaSpout(spoutConfig));

        // 设置bolt
        builder.setBolt("WordSplitBolt", //
                new WordSplitBolt()).//
                shuffleGrouping("kafkaSpout");

        // 设置bolt
        builder.setBolt("WordCountBolt", //
                new WordCountBolt()).//
                fieldsGrouping("WordSplitBolt", new Fields("word"));

        // 本地运行或者提交到集群
        if (args != null && args.length == 1) {
            // 集群运行
            StormSubmitter.submitTopology(args[0], //
                    new Config(), //
                    builder.createTopology());

        } else {
            // 本地运行
            LocalCluster cluster = new LocalCluster();
            cluster.submitTopology("local", //
                    new Config(),//
                    builder.createTopology());
            // 这里为了测试方便就不shutdown了
            Thread.sleep(10000000);
            // cluster.shutdown();
        }
    }

}

WordSplitBolt


WordSplitBolt中首先获取KafkaSpout中传递过来的message,然后将其根据空格分割成一个个单词并emit出去:

/**
  * project:storm-test
  * file:WordBolt.java
  * author:zxh
  * time:2015年9月23日 下午2:29:12
  * description:
  */
package cn.com.dimensoft.storm;

import backtype.storm.topology.BasicOutputCollector;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseBasicBolt;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values;

/**
 * class: WordSplitBolt
 * package: cn.com.dimensoft.storm
 * author:zxh
 * time: 2015年9月23日 下午2:29:12
 * description: 
 */
public class WordSplitBolt extends BaseBasicBolt {

    /**
     * long:serialVersionUID  
     * description:
     */
    private static final long serialVersionUID = -1904854284180350750L;

    @Override
    public void execute(Tuple input, BasicOutputCollector collector) {
        // 根据变量名获得从spout传来的值,这里的str是spout中定义好的变量名
        String line = input.getStringByField("str");

        // 对单词进行分割
        for (String word : line.split(" ")) {
            // 传递给下一个组件,即WordCountBolt
            collector.emit(new Values(word));
        }

    }

    @Override
    public void declareOutputFields(OutputFieldsDeclarer declarer) {
        // 声明本次emit出去的变量名称
        declarer.declare(new Fields("word"));
    }

}

WordCountBolt


WordCountBolt获得从WordSplitBolt中传递过来的单词并统计词频

/**
  * project:storm-test
  * file:WordCountBolt.java
  * author:zxh
  * time:2015年9月23日 下午2:29:39
  * description:
  */
package cn.com.dimensoft.storm;

import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import backtype.storm.topology.BasicOutputCollector;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseBasicBolt;
import backtype.storm.tuple.Tuple;


/**
 * class: WordCountBolt
 * package: cn.com.dimensoft.storm
 * author:zxh
 * time: 2015年9月23日 下午2:29:39
 * description: 
 */
public class WordCountBolt extends BaseBasicBolt {

    public  Logger log = LoggerFactory.getLogger(WordCountBolt.class);    

    /**
     * long:serialVersionUID  
     * description:
     */
    private static final long serialVersionUID = 7683600247870291231L;

    private static Map map = new HashMap();

    @Override
    public void execute(Tuple input, BasicOutputCollector collector) {

        // 根据变量名称获得上一个bolt传递过来的数据
        String word = input.getStringByField("word");

        Integer count = map.get(word);
        if (count == null) {
            map.put(word, 1);
        } else {
            count ++;
            map.put(word, count);
        }

        StringBuilder msg = new StringBuilder();
        for(Entry entry : map.entrySet()){
            msg.append(entry.getKey() + " = " + entry.getValue()).append(", ");
        }

        log.info(msg.toString());
    }

    @Override
    public void declareOutputFields(OutputFieldsDeclarer declarer) {

    }

}

Constant


Constant常量类:

/**
  * project:storm-kafka
  * file:Constant.java
  * author:zxh
  * time:2015年10月8日 下午2:06:29
  * description:
  */
package cn.com.dimensoft.constant;

/**
 * class: Constant
 * package: cn.com.dimensoft.constant
 * author:zxh
 * time: 2015年10月8日 下午2:06:29
 * description: 
 */
public class Constant {

    // 定义topic名称
    public static final String TOPIC = "storm-kafka-test";

    // zookeeper地址
    public static final String ZOOKEEPER_STRING = "hadoop-main.dimensoft.com.cn:2181,"
            + "hadoop-slave1.dimensoft.com.cn:2181,"
            + "hadoop-slave2.dimensoft.com.cn:2181";

    // broker在zookeeper中存储位置
    public static final String ZOOKEEPER_PTAH = "/kafka/brokers";

}

测试


创建topic

$ bin/kafka-topics.sh --create --zookeeper hadoop-main.dimensoft.com.cn:2181,hadoop-slave1.dimensoft.com.cn:2181,hadoop-slave2.dimensoft.com.cn:2181/kafka --partitions 2 --replication-factor 3 --topic storm-kafka-test

查看该topic信息

$ bin/kafka-topics.sh --describe --zookeeper hadoop-main.dimensoft.com.cn:2181,hadoop-slave1.dimensoft.com.cn:2181,hadoop-slave2.dimensoft.com.cn:2181/kafka --topic storm-kafka-test

//结果
Topic:storm-kafka-test  PartitionCount:2        ReplicationFactor:3     Configs:
        Topic: storm-kafka-test Partition: 0    Leader: 1       Replicas: 1,0,2 Isr: 1,0,2
        Topic: storm-kafka-test Partition: 1    Leader: 2       Replicas: 2,1,0 Isr: 2,1,0

直接在eclipse中运行WordCountTopology类,这样方便调试程序,运行完成之后使用kafka自带的producer来向storm-kafka-test这个topic推送数据

bin/kafka-console-producer.sh --broker-list hadoop-main.dimensoft.com.cn:9092,hadoop-slave1.dimensoft.com.cn:9092,hadoop-slave2.dimensoft.com.cn:9092 --topic storm-kafka-test

将以下内容发送到kafka(每行数据回车一次)

hadoop is a good technology
hadoop and hbase
today is a good day 

观察eclipse控制台输出

223538 [Thread-17-WordCountBolt] INFO  cn.com.dimensoft.storm.WordCountBolt - hadoop = 2, is = 1, technology = 1, hbase = 1, a = 1, today = 1, good = 1, and = 1, 
223538 [Thread-17-WordCountBolt] INFO  cn.com.dimensoft.storm.WordCountBolt - hadoop = 2, is = 2, technology = 1, hbase = 1, a = 1, today = 1, good = 1, and = 1, 
223538 [Thread-17-WordCountBolt] INFO  cn.com.dimensoft.storm.WordCountBolt - hadoop = 2, is = 2, technology = 1, hbase = 1, a = 2, today = 1, good = 1, and = 1, 
223538 [Thread-17-WordCountBolt] INFO  cn.com.dimensoft.storm.WordCountBolt - hadoop = 2, is = 2, technology = 1, hbase = 1, a = 2, today = 1, good = 2, and = 1, 
223539 [Thread-17-WordCountBolt] INFO  cn.com.dimensoft.storm.WordCountBolt - hadoop = 2, is = 2, technology = 1, hbase = 1, a = 2, today = 1, good = 2, day = 1, and = 1, 

注意:topology在本地运行的时候并不会在ZK中存储消费的storm-kafka-test offset,只有当将该topology提交到storm集群时才会在ZK中存储其offset。所以当该topology挂掉的时候如果producer仍然在往storm-kafka-test中推送信息的话当topology重启后这段时间所推送的信息就会丢失了。有兴趣的话可以测试一下,然后可以测试将该topology提交到storm集群,测试将topology kill掉,然后继续使用producer推送数据,然后再启动该topology,就会发现故障期间的信息在topology重启会进行消费而不会丢失。

自定义producer


上面测试的时候是使用kafka自带的producer,但是在业务场景中我们都是根据实际业务情况自定义自己的producer,其实跟上面的是相类似的,主体流程没有变化,只是将原先kafka自带的producer替换为自定义的producer,自定义的producer将message推送到storm-kafka-test这个topic即可,这样一旦有message推送过去的时候KafkaSpout就会接收到并进行处理。

SampleProducer


SampleProducer简单的从控制台读取用户输入信息并推送到kafka集群的storm-kafka-test中,然后storm通过订阅storm-kafka-test这个topic来对message进行处理:

/**
  * project:kafka-study
  * file:SampleProducer.java
  * author:zxh
  * time:2015年9月25日 下午4:05:51
  * description:
  */
package cn.com.dimensoft.kafka;

import java.util.Properties;
import java.util.Scanner;

import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig;
import cn.com.dimensoft.constant.Constant;

/**
 * class: SampleProducer
 * package: cn.com.dimensoft.kafka
 * author:zxh
 * time: 2015年9月25日 下午4:05:51
 * description: 
 *  step1 : 创建存放配置信息的properties
 *  step2 : 将properties封装到ProducerConfig中
 *  step3 : 创建producer对象
 *  step4 : 发送数据流
 */
public class SampleProducer {

    @SuppressWarnings("resource")
    public static void main(String[] args) throws InterruptedException {

        // step1 : 创建存放配置信息的properties
        Properties props = new Properties();

        // 指定broker集群
        props.put("metadata.broker.list", //
                "hadoop-main.dimensoft.com.cn:9092,"
                + "hadoop-slave1.dimensoft.com.cn:9092,"
                + "hadoop-slave2.dimensoft.com.cn:9092");
        /** 
         * ack机制
         * 0 which means that the producer never waits for an acknowledgement from the broker
         * 1 which means that the producer gets an acknowledgement after the leader replica has received the data
         * -1 The producer gets an acknowledgement after all in-sync replicas have received the data
         */
        props.put("request.required.acks", "1");
        // 消息发送类型 同步/异步
        props.put("producer.type", "sync");
        // 指定message序列化类,默认kafka.serializer.DefaultEncoder
        props.put("serializer.class", "kafka.serializer.StringEncoder");
        // 设置自定义的partition,当topic有多个partition时如何对message进行分区
        props.put("partitioner.class", "cn.com.dimensoft.kafka.SamplePartition");

        // step2 : 将properties封装到ProducerConfig中
        ProducerConfig config = new ProducerConfig(props);

        // step3 : 创建producer对象
        Producer producer = new Producer(config);

        Scanner sc = new Scanner(System.in);
        for (int i = 1; i <= 10; i++) {
            // step4 : 发送数据流
//          producer.send(new KeyedMessage(Constant.TOPIC, //
//                  i + "", //
//                  String.valueOf("我是 " + i + " 号")));

            Thread.sleep(1000);
            producer.send(new KeyedMessage(Constant.TOPIC, sc.next()));
        }
    }

}

SamplePartition


SamplePartition是自定义的partition,用来对消息进行分区:

/**
  * project:kafka-study
  * file:SamplePartition.java
  * author:zxh
  * time:2015年9月28日 下午5:37:19
  * description:
  */
package cn.com.dimensoft.kafka;

import kafka.producer.Partitioner;
import kafka.utils.VerifiableProperties;

/**
 * class: SamplePartition
 * package: cn.com.dimensoft.kafka
 * author:zxh
 * time: 2015年9月28日 下午5:37:19
 * description: 设置自定义的partition,指明当topic有多个partition时如何对message进行分区
 */
public class SamplePartition implements Partitioner {

    /**
     * constructor
     * author:zxh
     * @param verifiableProperties
     * description: 去除该构造方法后启动producer报错NoSuchMethodException
     */
    public SamplePartition(VerifiableProperties verifiableProperties) {

    }

    @Override
    /**
     * 这里对message分区的依据只是简单的让key(这里的key就是Producer[K,V]中的K)对partition的数量取模
     */
    public int partition(Object obj, int partitions) {

        // 对partitions数量取模
        return Integer.parseInt(obj.toString()) % partitions;
    }

}

测试的时候直接将WordCountTopology打包提交到storm集群运行,打开storm的worker日志,然后eclipse运行SampleProducer程序,通过从eclipse控制台输入数据来观察storm的worker日志输出。

topology提交到storm集群之后可以发现ZK中存储了storm-kafka-test 被消费offset的znode,这样即使topology故障重启之后message也不会丢失

这里写图片描述

storm中work的日志输出

这里写图片描述

你可能感兴趣的:(Kafka,Storm)