浅谈人工智能、计算机视觉与机器学习的关系

最近公众号看到讲人工智能、计算机视觉、机器学习三者关系的,摘录一段朱松纯(加州大学洛杉矶分校UCLA统计学和计算机科学教授)原话。

关于人工智能和计算机视觉:

人工智能是在60年代中后期起步的。一直到80年代,翻开它的教科书,就是一些启发式搜索,研究最多的是下棋, 从国际象棋一直到最近的围棋,都是比较抽象的表达。棋盘的位置是有限的、下棋的动作也是有限的, 没有感知和动作执行的不确定性。 所有的问题都变成一个图搜索的问题,教科书上甚至出现了一个通用图搜索算法号称可以解决任何人工智能问题。当时视觉问题还没引起大家重视。我这里有一份1966 年7月 的 MIT AI 实验室的第100号报告(备忘录memo 100),很短,题目叫做“The Summer Vision Project”。这个备忘录的基本意思就是暑假的时候找几个学生构造一个视觉系统。他们当时可能就觉得这个问题基本上是不需要做什么研究的。所以你就一个暑假,几个人一起写个程序,就把它干掉算了。现在说起来,当然是个笑话

到80年代,人工智能, 连带机器人研究就跌入了低谷, 所谓的冬天。那个时候,很多实验室都改名字了, 因为拿不到经费了。 客观来说,80年代, 一个微型计算机的它的内存只有640K字节,还不到一兆(1MB一百万字节),我们现在一张图像,随便就是几个兆的大小,它根本无法读入一张图像,还谈什么理解呢?等到我做博士论文的时候(1992-1996),我导师把当时哈佛机器人实验室最好的SUN工作站给我用,也就是32兆字节。我们实验室花了25万美元构建了一个图像采集系统,因为当时没有数字照相机。可以这么说,一直到90年代中期的时候,我们基本上不具备研究视觉这个问题的硬件条件和数据基础。只能用一些特征点的对应关系做射影几何,用一些线条做形状分析。因为图像做不了,所以80年代计算机视觉的研究,很大部分是做几何。

关于机器学习和计算机视觉:

计算机视觉是一个domain, 它有很多问题要研究, 就像物理学。 而机器学习基本是一个方法和工具,就像数学和统计学。 这个名词的兴起应该还是最近的事情, 在我看来,是来自于两股人马。 80年代人工智能走入低谷后,迎来了人工神经网络的一个高潮, 所谓的从符号主义到连接主义的过渡。在中国80年代与气功、人体科学一起走红,但这基本是昙花一现。到了90年代初, 退潮之后,就开始搞 NIPS这个会议, 引入统计的方法来做。还有一股就是做模式识别的一些工程人员EECS 背景的。 按道理来说, 这个领域应该叫做 统计学习 (Statistical Learning),因为它的方法都是由概率统计领域拿来的。这些人中的领军人物很有商业头脑, 把统计和物理的数理模型, 改名叫做机器, 比如模型(model)就叫机(machine),把一些层次模型(hierarchical model)说成是“网”(net)。这样,搞出了几个“机”和“网”之后, 这个领域就有了地盘。另一方面,我的那些做统计的同事们也都老实、图个清静,不与他们去争论, 也大多无力去争。当然,统计学领域也有不少人参与了机器学习的浪潮。简单说,机器学习中的 “机器”就是统计模型,“学习”就是用数据来拟合模型。 是由做计算机的人抢占了统计人的理论和方法,然后,应用到视觉、语音语言等 domains。 我在计算机和统计两个系当教授, 看得一清二楚。 这个问题我以后可以专门讨论。

这个机器学习的群体在2000年之后,加上大量数据的到来,很快就成长了, 商业上取得很大的成功。机器学习和计算机视觉大概有百分之六七十是重合的。顺便说一句,2019年我们两个领域会在一起在洛杉矶开CVPR 和 ICML年会, 我是CVPR19的大会主席。因为学习搞来搞去,最丰富的数据是在视觉(图像和视频)。现在这次机器学习的一些大的动作和工程上的推广工作,还是从计算机视觉这边开始的。

感觉是把整个发展的来龙去脉讲得非常清楚了。机器学习是方法,更具体地说是基于统计的方法;计算机视觉是具体的一个领域,而这个领域会用到机器学习的方法来解决问题;人工智能是一个更大的范畴。按朱教授的比喻,机器学习是数学,计算机视觉是物理学,而人工智能则是整个自然科学的范畴。

你可能感兴趣的:(机器学习)