使用 org.apache.hadoop.hbase.client.Put 将数据一条一条写入Hbase中,但是和Bulk加载相比效率低下,仅仅作为对比。
import org.apache.spark._
import org.apache.spark.rdd.NewHadoopRDD
import org.apache.hadoop.hbase.{HBaseConfiguration, HTableDescriptor}
import org.apache.hadoop.hbase.client.HBaseAdmin
import org.apache.hadoop.hbase.mapreduce.TableInputFormat
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.HColumnDescriptor
import org.apache.hadoop.hbase.util.Bytes
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.HTable;
val conf = HBaseConfiguration.create()
val tableName = "/iteblog"
conf.set(TableInputFormat.INPUT_TABLE, tableName)
val myTable = new HTable(conf, tableName);
var p = new Put();
p = new Put(new String("row999").getBytes());
p.add("cf".getBytes(), "column_name".getBytes(), new String("value999").getBytes());
myTable.put(p);
myTable.flushCommits();
批量导数据到Hbase又可以分为两种:(1)、生成Hfiles,然后批量导数据;
(2)、直接将数据批量导入到Hbase中。
批量将Hfiles导入Hbase
现在我们来介绍如何批量将数据写入到Hbase中,主要分为两步:
(1)、先生成Hfiles;
(2)、使用 org.apache.hadoop.hbase.mapreduce.LoadIncrementalHFiles 将事先生成Hfiles导入到Hbase中。
实现的代码如下:
import org.apache.spark._
import org.apache.spark.rdd.NewHadoopRDD
import org.apache.hadoop.hbase.{HBaseConfiguration, HTableDescriptor}
import org.apache.hadoop.hbase.client.HBaseAdmin
import org.apache.hadoop.hbase.mapreduce.TableInputFormat
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.HColumnDescriptor
import org.apache.hadoop.hbase.util.Bytes
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.HTable;
import org.apache.hadoop.hbase.mapred.TableOutputFormat
import org.apache.hadoop.mapred.JobConf
import org.apache.hadoop.hbase.io.ImmutableBytesWritable
import org.apache.hadoop.mapreduce.Job
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat
import org.apache.hadoop.hbase.KeyValue
import org.apache.hadoop.hbase.mapreduce.HFileOutputFormat
import org.apache.hadoop.hbase.mapreduce.LoadIncrementalHFiles
val conf = HBaseConfiguration.create()
val tableName = "iteblog"
val table = new HTable(conf, tableName)
conf.set(TableOutputFormat.OUTPUT_TABLE, tableName)
val job = Job.getInstance(conf)
job.setMapOutputKeyClass (classOf[ImmutableBytesWritable])
job.setMapOutputValueClass (classOf[KeyValue])
HFileOutputFormat.configureIncrementalLoad (job, table)
// Generate 10 sample data:
val num = sc.parallelize(1 to 10)
val rdd = num.map(x=>{
val kv: KeyValue = new KeyValue(Bytes.toBytes(x), "cf".getBytes(), "c1".getBytes(), "value_xxx".getBytes() )
(new ImmutableBytesWritable(Bytes.toBytes(x)), kv)
})
// Save Hfiles on HDFS
rdd.saveAsNewAPIHadoopFile("/tmp/iteblog", classOf[ImmutableBytesWritable], classOf[KeyValue],
classOf[HFileOutputFormat], conf)
//Bulk load Hfiles to Hbase
val bulkLoader = new LoadIncrementalHFiles(conf)
bulkLoader.doBulkLoad(new Path("/tmp/iteblog"), table)
运行完上面的代码之后,我们可以看到Hbase中的iteblog表已经生成了10条数据,如下:
hbase(main):020:0> scan 'iteblog'
ROW COLUMN+CELL
\x00\x00\x00\x01 column=cf:c1, timestamp=1425128075586, value=value_xxx
\x00\x00\x00\x02 column=cf:c1, timestamp=1425128075586, value=value_xxx
\x00\x00\x00\x03 column=cf:c1, timestamp=1425128075586, value=value_xxx
\x00\x00\x00\x04 column=cf:c1, timestamp=1425128075586, value=value_xxx
\x00\x00\x00\x05 column=cf:c1, timestamp=1425128075586, value=value_xxx
\x00\x00\x00\x06 column=cf:c1, timestamp=1425128075675, value=value_xxx
\x00\x00\x00\x07 column=cf:c1, timestamp=1425128075675, value=value_xxx
\x00\x00\x00\x08 column=cf:c1, timestamp=1425128075675, value=value_xxx
\x00\x00\x00\x09 column=cf:c1, timestamp=1425128075675, value=value_xxx
\x00\x00\x00\x0A column=cf:c1, timestamp=1425128075675, value=value_xxx
这种方法不需要事先在HDFS上生成Hfiles,而是直接将数据批量导入到Hbase中。与上面的例子相比只有微小的差别,具体如下:
将
rdd.saveAsNewAPIHadoopFile("/tmp/iteblog", classOf[ImmutableBytesWritable], classOf[KeyValue],
classOf[HFileOutputFormat], conf)
修改成:
rdd.saveAsNewAPIHadoopFile("/tmp/iteblog", classOf[ImmutableBytesWritable], classOf[KeyValue],
classOf[HFileOutputFormat], job.getConfiguration())
完整的实现如下:
import org.apache.spark._
import org.apache.spark.rdd.NewHadoopRDD
import org.apache.hadoop.hbase.{HBaseConfiguration, HTableDescriptor}
import org.apache.hadoop.hbase.client.HBaseAdmin
import org.apache.hadoop.hbase.mapreduce.TableInputFormat
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.HColumnDescriptor
import org.apache.hadoop.hbase.util.Bytes
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.HTable;
import org.apache.hadoop.hbase.mapred.TableOutputFormat
import org.apache.hadoop.mapred.JobConf
import org.apache.hadoop.hbase.io.ImmutableBytesWritable
import org.apache.hadoop.mapreduce.Job
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat
import org.apache.hadoop.hbase.KeyValue
import org.apache.hadoop.hbase.mapreduce.HFileOutputFormat
import org.apache.hadoop.hbase.mapreduce.LoadIncrementalHFiles
val conf = HBaseConfiguration.create()
val tableName = "iteblog"
val table = new HTable(conf, tableName)
conf.set(TableOutputFormat.OUTPUT_TABLE, tableName)
val job = Job.getInstance(conf)
job.setMapOutputKeyClass (classOf[ImmutableBytesWritable])
job.setMapOutputValueClass (classOf[KeyValue])
HFileOutputFormat.configureIncrementalLoad (job, table)
// Generate 10 sample data:
val num = sc.parallelize(1 to 10)
val rdd = num.map(x=>{
val kv: KeyValue = new KeyValue(Bytes.toBytes(x), "cf".getBytes(), "c1".getBytes(), "value_xxx".getBytes() )
(new ImmutableBytesWritable(Bytes.toBytes(x)), kv)
})
// Directly bulk load to Hbase/MapRDB tables.
rdd.saveAsNewAPIHadoopFile("/tmp/iteblog", classOf[ImmutableBytesWritable], classOf[KeyValue],
classOf[HFileOutputFormat], job.getConfiguration())
在上面的例子中我们使用了 saveAsNewAPIHadoopFile API来将数据写到HBase中;事实上,我们还可以通过使用 saveAsNewAPIHadoopDataset API来实现同样的目标,我们仅仅需要将下面代码
rdd.saveAsNewAPIHadoopFile("/tmp/iteblog", classOf[ImmutableBytesWritable], classOf[KeyValue],
classOf[HFileOutputFormat], job.getConfiguration())
修改成
job.getConfiguration.set("mapred.output.dir", "/tmp/iteblog")
rdd.saveAsNewAPIHadoopDataset(job.getConfiguration)
剩下的和和之前完全一致。