基于简单seq to seq 的聊天机器人+代码实现 (tensorfow 1.1版本)

一、seq2seq模型简介

基本的Encoder-Decoder模型图如下:

基于简单seq to seq 的聊天机器人+代码实现 (tensorfow 1.1版本)_第1张图片

输入的序列为['A','B','C"]输出的序列为['W','X','Y','Z"]

二、tensorflow1.1 seq2seq接口

   自从tensorflow1.0.0开始,出现新的seq2seq接口。新的接口主姚采用动态展开,旧接口是静态展开的。

 静态展开: 指的是定义模型创建graph的时候,序列的长度是固定的,之后传入的所有序列都得是定义时指定的长度。这样所有的句子都要padding到指定的长度,很浪费存储空间,计算效率也不高。但想处理变长序列,也是有办法的,需要预先指定一系列的buckets,如[(5,10), (10, 15), (15, 20)]。

 动态展开:使用控制流ops处理序列,可以不需要事先指定好序列长度。

三、seq2seq模型

  搭建seq2seq模型,主要包括以下几方面的东西:

 1. Encoder

 2. Decoder

     training decoder::decoder的输出已知

     infereence decoder:decoder输出未知

 3.seq2seq模型,把Encoder和Dccoder联系起来

 4.建立图

 5.训练模型

四、代码讲解

4.1每个句子特殊处理

  (1)在训练过程中,每个batch中的句子长度不同,此时对于短句子用填充

  (2)用于句子结尾

  (3)不在字典中的词用替换

  (4)decoder第一个输入,告诉decoder预测开始

4.2数据的输入

   这部分主要包括对数据的预处理,分词等操作,把文本转化成对应的索引,

[[6, 28, 18, 14, 19, 3], 
[10, 26, 3], 
[16, 23, 11, 20, 3], 
[16, 4, 15, 3]]

主要 代码如下:

4.3seq2seq模型搭建

from distutils.version import LooseVersion
import tensorflow as tf
from tensorflow.python.layers.core import Dense
def get_inputs():
    '''
    模型输入tensor
    '''
    inputs = tf.placeholder(tf.int32, [None, None], name='inputs')
    targets = tf.placeholder(tf.int32, [None, None], name='targets')
    learning_rate = tf.placeholder(tf.float32, name='learning_rate')
    
    
    target_sequence_length = tf.placeholder(tf.int32, (None,), name='target_sequence_length')
    max_target_sequence_length = tf.reduce_max(target_sequence_length, name='max_target_len')
    source_sequence_length = tf.placeholder(tf.int32, (None,), name='source_sequence_length')
    
    return inputs, targets, learning_rate, target_sequence_length, max_target_sequence_length, source_sequence_length
def get_encoder_layer(input_data, rnn_size, num_layers,
                   source_sequence_length, source_vocab_size, 
                   encoding_embedding_size):

    encoder_embed_input = tf.contrib.layers.embed_sequence(input_data, source_vocab_size, encoding_embedding_size)

    def get_lstm_cell(rnn_size):
        lstm_cell = tf.contrib.rnn.LSTMCell(rnn_size, initializer=tf.random_uniform_initializer(-0.1, 0.1, seed=2))
        return lstm_cell

    cell = tf.contrib.rnn.MultiRNNCell([get_lstm_cell(rnn_size) for _ in range(num_layers)])
    
    encoder_output, encoder_state = tf.nn.dynamic_rnn(cell, encoder_embed_input, 
                                                      sequence_length=source_sequence_length, dtype=tf.float32)
    
    return encoder_output, encoder_state
def process_decoder_input(data, vocab_to_int, batch_size):

    ending = tf.strided_slice(data, [0, 0], [batch_size, -1], [1, 1])
    decoder_input = tf.concat([tf.fill([batch_size, 1], vocab_to_int['']), ending], 1)

    return decoder_input
def decoding_layer(target_to_int, decoding_embedding_size, num_layers, rnn_size,target_sequence_length, max_target_sequence_length, encoder_state, decoder_input):
        
    
    
    target_vocab_size = len(target_to_int)
    decoder_embeddings = tf.Variable(tf.random_uniform([target_vocab_size, decoding_embedding_size]))
    decoder_embed_input = tf.nn.embedding_lookup(decoder_embeddings, decoder_input)

    
    def get_decoder_cell(rnn_size):
        decoder_cell = tf.contrib.rnn.LSTMCell(rnn_size,
                                           initializer=tf.random_uniform_initializer(-0.1, 0.1, seed=2))
        return decoder_cell
    cell = tf.contrib.rnn.MultiRNNCell([get_decoder_cell(rnn_size) for _ in range(num_layers)])
     
    # 
    output_layer = Dense(target_vocab_size,
                         kernel_initializer = tf.truncated_normal_initializer(mean = 0.0, stddev=0.1))


    
    with tf.variable_scope("decode"):
        
        training_helper = tf.contrib.seq2seq.TrainingHelper(inputs=decoder_embed_input,
                                                            sequence_length=target_sequence_length,
                                                            time_major=False)
        
        training_decoder = tf.contrib.seq2seq.BasicDecoder(cell,
                                                           training_helper,
                                                           encoder_state,
                                                           output_layer) 
        training_decoder_output, _ = tf.contrib.seq2seq.dynamic_decode(training_decoder,
                                                                       impute_finished=True,
                                                                       maximum_iterations=max_target_sequence_length)
     
    with tf.variable_scope("decode", reuse=True):
        
        start_tokens = tf.tile(tf.constant([target_to_int['']], dtype=tf.int32), [batch_size], 
                               name='start_tokens')
        predicting_helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(decoder_embeddings,
                                                                start_tokens,
                                                                target_to_int[''])
        predicting_decoder = tf.contrib.seq2seq.BasicDecoder(cell,
                                                        predicting_helper,
                                                        encoder_state,
                                                        output_layer)
        predicting_decoder_output, _ = tf.contrib.seq2seq.dynamic_decode(predicting_decoder,
                                                            impute_finished=True,
                                                            maximum_iterations=max_target_sequence_length)
    
    return training_decoder_output, predicting_decoder_output
def seq2seq_model(input_data, targets, lr, target_sequence_length, 
                  max_target_sequence_length, source_sequence_length,
                  source_vocab_size, target_vocab_size,
                  encoder_embedding_size, decoder_embedding_size, 
                  rnn_size, num_layers):
    
    #
    _, encoder_state = get_encoder_layer(input_data, 
                                  rnn_size, 
                                  num_layers, 
                                  source_sequence_length,
                                  source_vocab_size, 
                                  encoding_embedding_size)
    
    
  
    decoder_input = process_decoder_input(targets, target_to_int, batch_size)

    training_decoder_output, predicting_decoder_output = decoding_layer(target_to_int, 
                                                                       decoding_embedding_size, 
                                                                       num_layers, 
                                                                       rnn_size,
                                                                       target_sequence_length,
                                                                       max_target_sequence_length,
                                                                       encoder_state, 
                                                                       decoder_input) 
    
    return training_decoder_output, predicting_decoder_output
 

你可能感兴趣的:(自然语言处理,tensorflow)