综述性论文,针对Graph SLAM的总体框架、前端、后端分别进行描述。
sensors的论文感觉都挺长啊,这篇论文里综述部分整理的很有条理,表格如下
[23]. He, B.; Liang, Y.; Feng, X.; Nian, R.; Yan, T.H.; Li, M.H.; Zhang, S.J. AUV SLAM and experiments using a mechanical scanning forward-looking sonar. Sensors 2012, 12, 9386–9410.
[24]. Burguera, A.; Gonzalez, Y.; Oliver, G. Underwater SLAM with robocentric trajectory using a mechanically scanned imaging sonar. In Proceedings of the 2011 IEEE International Conference on Intelligent Robotics and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 3577–3582.
[25]. Aulinas, J.; Carreras, M.; Llado, X.; Salvi, J.; Garcia, R.; Petillot, Y.R. Feature extraction for underwater visual SLAM. In Proceedings of the 2011 IEEE Oceans, Santander, Spain, 6–9 June 2011; pp. 1–7.
[26]. Mallios, A.; Ridao, P.; Hernàndez, E.; Ribas, D.; Maurelli, F.; Petillot, Y.R. Pose-based SLAM with probabilistic scan matching algorithm using a mechanical scanned imaging sonar. In Proceedings of the 2009 Europe Oceans, Bremen, Germany, 11–14 May 2009; pp. 1–6.
[27]. Barkby, S.; Williams, S.B.; Pizarro, O.; Jakuba, M. Incorporating prior bathymetric maps with distributed particle bathymetric SLAM for improved AUV navigation and mapping. In Proceedings of the MTS/IEEE Oceans Conference and Exhibition, Biloxi, MS, USA, 26–29 October 2009; Volume 2, pp. 1–7.
[28]. Ribas, D.; Ridao, P.; Tardós, J.D. Underwater SLAM in man made structured environments. J. Field Robot. 2008, 25, 898–921. [CrossRef]
[29]. Fairfield, N.; Wettergreen, D. Active localization on the ocean floor with multibeam sonar. In Proceedings of the MTS/IEEE OCEANS, Quebec City, Canada, 15–18 September 2008; pp. 1–10.
[30]. Roman, C.N.; Singh, H. A self-consistent bathymetric mapping algorithm. J. Field Robot. 2007, 24, 23–50.
[31]. Fairfield, N.; Kantor, G.; Wettergreen, D. Real-time slam with octree evidence grids for exploration in underwater tunnels. J. Field Robot. 2007, 24, 3–21.
[32]. Williams, S.; Mahon, I. Simultaneous localisation and mapping on the Great Barrier Reef. In Proceedings of the IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, 26 April–1 May 2004; Volume 2, pp. 1771–1776.
[33]. Tena-Ruiz, I.; Raucourt, S.; Petillot, Y.; Lane, D.M. Concurrent mapping and localization using side-scan sonar. IEEE J. Ocean. Eng. 2004, 29, 442–456.
[34]. Williams, S.B. Efficient Solutions to Autonomous Mapping and Navigation Problems. Ph.D thesis, Australian Center for Field Robotics, University of Sydney, Sydney, Australia, 2001.
Hector SLAM and GMapping :常用的两种laser SLAM方法,有ROS工具包
Hector SLAM:基于Gauss-Newton法,单独使用scan matching估计位置
http://wiki.ros.org/hector_slam (ROS package)
Gmapping:Rao-Blackwellized particle filter,使用里程计估计位置
http://wiki.ros.org/gmapping/ (ROS package)
Augmented Extended Kalman Filter (AEKF)
相较于EKF,其改进在于认为系统噪声均值不为0(仍满足高斯分布),在每一步对过程噪声和测量噪声的均值和方差进行修正(在update过程中)。
本文以考虑机器人x,y和首向角三自由度运动距离,测量信息为测距,公式说明极其细致,适合EKF SLAM的入门学习。
European Smart and Networking Underwater Robots in Cooperation Meshes (SWARMs) project:该项目中有水下机器人SLAM的部分,网址为
http://www.swarms.eu/index.html
一篇很长的论文,让我一度以为这是硕士的毕业论文。论文主要讲述的是使用视觉和声学(主要是多波束声纳)的混合SLAM方法,没怎么细看框架,但是论文使用的应该是图优化方法,同时在视觉上使用了BA。这篇论文说明了视觉/声学SLAM具备可行性。
但是,根据该篇论文显示,两种传感器的混合并没有显著提高建图精度,其目的主要是丰富测绘得到的信息从而保证算法在信息贫瘠的区域能够运行。