- 深度学习入门篇:PyTorch实现手写数字识别
AI_Guru人工智能
深度学习pytorch人工智能
深度学习作为机器学习的一个分支,近年来在图像识别、自然语言处理等领域取得了显著的成就。在众多的深度学习框架中,PyTorch以其动态计算图、易用性强和灵活度高等特点,受到了广泛的喜爱。本篇文章将带领大家使用PyTorch框架,实现一个手写数字识别的基础模型。手写数字识别简介手写数字识别是计算机视觉领域的一个经典问题,目的是让计算机能够识别并理解手写数字图像。这个问题通常作为深度学习入门的练习,因为
- Python OpenCV精讲系列 - 高级图像处理技术(五)
极客代码
PythonOpenCV精讲pythonopencv图像处理开发语言人工智能计算机视觉
⚡️⚡️专栏:PythonOpenCV精讲⚡️⚡️本专栏聚焦于Python结合OpenCV库进行计算机视觉开发的专业教程。通过系统化的课程设计,从基础概念入手,逐步深入到图像处理、特征检测、物体识别等多个领域。适合希望在计算机视觉方向上建立坚实基础的技术人员及研究者。每一课不仅包含理论讲解,更有实战代码示例,助力读者快速将所学应用于实际项目中,提升解决复杂视觉问题的能力。无论是入门者还是寻求技能进
- 计算机视觉之旅-进阶-图像滤波处理
撸码猿
计算机视觉图像处理人工智能
1.基本概念1.1.数字图像图像处理的对象是数字图像,它是由像素点阵列表示的图像。需要了解像素、图像分辨率、灰度级、RBG等图像表示方法。用numpy数组表示,每个元素为像素值。例如RGB图像 importnumpyasnp img=np.array([[[255,0,0],[0,255,0]],[[0,0,255],[255,255,255]]]) 1.2.采样和量化数字图像是通过采样和量化得到
- 数字图像处理(一系列对图像进行处理、分析和改进的技术)
编程日记✧
智能医疗计算机视觉图像处理人工智能
数字图像处理是指对图像进行一系列的数学和算法处理,以增强、分析或理解图像的内容。这些处理包括从基础的像素操作到复杂的高维变换和机器学习模型。1.图像降噪在图像获取和传输过程中,往往会引入噪声。降噪技术用于减少这些噪声,同时尽量保持图像的细节。常见方法有:均值滤波:将像素邻域内的像素值取平均值,从而平滑图像。这种方法简单但可能会模糊边缘。高斯滤波:使用高斯函数为权重对像素进行加权平均,可以更好地平滑
- halcon深度学习4:深度学习在 OCR的用法-deep_ocr_workflow解析
mlxg99999
halcon深度学习自学
1.什么是OCR技术OCR,全称是OpticalCharacterRecognition,即光学字符识别,面向扫描文件。但是由于现在数字图像的普及,这里泛指文字检测和识别,包括扫描文档和自然场景的文字识别。2、deep_ocr_workflow在深度学习中,只有一篇例子关于OCR就是这一篇,文中介绍了深度OCR模型的建立与使用(如果使用过计量模型的可以较好理解,就是建立模型→设置参数→导入图片→进
- 基于语言的三种图像简单去噪算法:高效C++实现
m0_57781768
C语言(C++)算法研究和解读算法c++计算机视觉
基于语言的三种图像简单去噪算法:高效C++实现图像处理在现代计算机视觉中占有重要地位,而去噪处理则是图像处理的重要环节之一。本文将介绍三种基于语言的简单图像去噪算法,并提供详细的C++实现。我们将重点介绍均值滤波、中值滤波和高斯滤波三种方法,并探讨它们在图像去噪中的应用和效果。引言在数字图像处理中,噪声是不可避免的。它可能是由传感器噪声、传输错误或压缩伪影引起的。去噪的目的是在保留图像重要特征的同
- MTCNN人脸检测算法
samuelwang_ccnu
深度学习
人脸检测是指识别数字图像中的人脸。人脸检测可以视为目标检测的一种特殊情况。在目标检测中,任务是查找图像中特定类的所有对象的位置和大小。例如行人和汽车。在人脸检测中应用较广的算法就是MTCNN(Multi-taskCascadedConvolutionalNetworks的缩写)。MTCNN算法是一种基于深度学习的人脸检测和人脸对齐方法,它可以同时完成人脸检测和人脸对齐的任务,相比于传统的算法,它的
- (二)十分简易快速 自己训练样本 opencv级联lbp分类器 车牌识别
Sisphusssss
opencv人工智能计算机视觉笔记python学习
强烈建议先阅读上一篇博文,此篇博文是上一篇的拓展目录1、haar与lbp分类器的对比2、使用工具对LBP特征类型进行训练3、LBP分类器现象展示4、完整代码贴出5、更新后的工程贴出6、结语1、haar与lbp分类器的对比Haar特征分类器的优缺点:优点:准确性:在训练数据充足且质量高的情况下,Haar分类器可以达到很高的检测准确率。成熟稳定:Haar特征分类器是较早使用的特征检测方法之一,经过多年
- 机器视觉-4 检测原理之OpenCV Blob特征检测
dingkm666
机器视觉计算机视觉人工智能深度学习
在OpenCV中,BLOB(BinaryLargeOBjects)检测是一种用于识别和分析二值图像中连通区域的技术。OpenCV提供了专门的工具类SimpleBlobDetector来帮助实现这一功能。以下是关于OpenCV中BLOB检测的详细说明,包括其原理、使用方法和应用场景。一.什么是BLOB?在图像处理的背景下,BLOB指的是图像中颜色一致且连接在一起的像素区域。在二值图像中,这些区域通常
- 深度学习-OpenCV运用(3)
红米煮粥
深度学习opencv人工智能
文章目录一、简介二、OpenCV运用1.图片扩充2.图像阈值处理3.添加椒盐噪声三、总结一、简介深度学习(DeepLearning)与OpenCV(OpenSourceComputerVisionLibrary)的结合为计算机视觉领域带来了强大的解决方案。OpenCV是一个开源的计算机视觉和机器学习软件库,它提供了大量的视觉处理算法,包括但不限于图像和视频处理、特征检测、对象识别等。二、OpenC
- 盒子滤波(BOX FILTER)方框滤波学习笔记
Hilary煜
学习笔记matlab数据结构
功能:在给定的滑动窗口大小下,对每个窗口内的像素值进行快速相加求和。应用:图像的局部矩形内像素的和、平方和、均值、方差等特征也可以用类似Haar特征的计算方法来计算Haar特征是一种用于物体识别的数字图像特征,特别是在人脸检测领域中得到了广泛应用。Haar特征得名于其与原始的Haar小波变换在计算方式上的相似性。这种特征通过计算图像中相邻矩形区域的像素强度差来捕捉图像的某些特性,如边缘、线条和中心
- 基于MATLAB的苹果外观特征检测
柠檬少少开发
计算机视觉人工智能深度学习
摘要本文根据苹果分级判定标准中的两个评定指标:果径和果面缺陷,探讨如何利用MATLAB技术进行苹果外观的特征检测,从而提高苹果品质检测的工作效率。关键词MATLAB;苹果分级;果径;果面缺陷0引言近年来,随着人们生活水平的提高,对于水果的品质要求也不断提高,实行水果分级销售成为当前市场的一个趋势。传统的水果等级评判主要依靠工人手摸、眼看,评定指标不客观,且人工成本高、效率低,不利于产业的规模化、工
- EMGU.CV入门(十四、图像轮廓)
LyRics1996
计算机视觉opencv图像处理EMGU.CVc#
一、轮廓1.1边缘和轮廓的区别边缘:离散的,断开的轮廓:整体的,连续的边缘检测主要是通过一些手段检测数字图像中明暗变化剧烈(即梯度变化比较大)像素点,偏向于图像中像素点的变化。如canny边缘检测,结果通常保存在和源图片一样尺寸和类型的边缘图中。轮廓检测指检测图像中的对象边界,更偏向于关注上层语义对象。如OpenCV中的findContours()函数,它会得到每一个轮廓并以点向量方式存储,除此也
- 研究人员利用ChatGPT的强大功能,创建数字病理学AI工具
智写AI
人工智能chatgpt百度
丹娜—法伯癌症研究所和威尔康奈尔医学院的科学家开发并测试了针对数字病理学的新型人工智能工具。数字病理学是一个相对较新的领域,它使用由组织样本创建的高分辨率数字图像来诊断疾病并为治疗决策提供参考。他们的论文于2024年7月9日发表在《柳叶刀数字健康》上,表明ChatGPT是一种为理解和生成文本而开发的人工智能语言模型,可以使用一种称为检索增强生成的人工智能技术进行定制,以对有关数字病理学的问题提供准
- 机器学习:knn算法实现图像识别
夜清寒风
机器学习算法人工智能
1、概述使用K-近邻(K-NearestNeighbors,KNN)算法对手写数字进行识别的过程。通过读取一张包含多个手写数字的图片,将其分割成单独的数字图像,并将其作为训练和测试数据集。2、数据处理思路1、图像分割该数据有50行100列,每个数字占据20*20个像素点,可以进行切分2、划分出训练集和测试集3、每个数据的像素点为20*20,将其全部变成一列1*400格式,转换成数值特征4、最后使用
- 24.7.27学习笔记
kkkkk021106
学习笔记
(按照老师发的学习计划走)先学习数字图像处理:1.单色图像0-255黑到白2.彩色图像:红绿蓝三元组的二维矩阵0-255像元(Pixel,图像元素的简称)是数字图像中最小的单元,代表图像中的一个点。每个像元都有一个特定的颜色和亮度值,组合在一起形成完整的图像。以下是关于像元的一些关键点:定义:像元是构成数字图像的基本单元。每个像元通常由多个颜色通道(如红色、绿色和蓝色)组成每个像元的颜色通常用数字
- 数字图像处理 - 形态学腐蚀
HelloZEX
数字图像处理C++图像处理opencv形态学处理
一、理论与概念讲解——从现象到本质1.1形态学概述形态学(morphology)一词通常表示生物学的一个分支,该分支主要研究动植物的形态和结构。而我们图像处理中指的形态学,往往表示的是数学形态学。下面一起来了解数学形态学的概念。数学形态学(Mathematicalmorphology)是一门建立在格论和拓扑学基础之上的图像分析学科,是数学形态学图像处理的基本理论。其基本的运算包括:二值腐蚀和膨胀、
- 什么是特征检测和描述,OpenCV中常见的特征检测算法有哪些?
-Max-静-
#opencv学习opencv算法人工智能
特征检测和描述是计算机视觉中的基本概念,它们在图像识别、对象跟踪、图像拼接等多种任务中发挥着至关重要的作用。特征检测是指识别图像中重要的特定点、区域或结构,这些特征通常具有独特性、可重复性以及对光照变化、旋转和比例变换等变化的鲁棒性。这些特征点可以用作进一步分析的参考。特征描述是基于一定的几何或者颜色信息生成特征点的特征描述符,这种描述应满足欧式空间的仿射不变性和噪声鲁棒性,并且不同特征点的特征描
- 深入了解OpenCVSharp中常见的图像处理功能
仰望大佬007
图像处理opencv计算机视觉c#
深入了解OpenCVSharp中常见的图像处理功能前言1.图像加载与保存2.图像基本操作3.图像滤波4.边缘检测5.图像分割6.特征检测与描述子7.目标识别与跟踪8.图像融合与拼接9.形状匹配与模板匹配10.颜色空间转换与直方图11.图像转换与绘制12.图像分类与机器学习13.高级图像处理算法14.GPU加速与并行计算前言OpenCVSharp是C#语言中用于图像处理和计算机视觉的开源库,它提供了
- 挑战杯 基于机器视觉的二维码识别检测 - opencv 二维码 识别检测 机器视觉
laafeer
python
文章目录0简介1二维码检测2算法实现流程3特征提取4特征分类5后处理6代码实现5最后0简介优质竞赛项目系列,今天要分享的是基于机器学习的二维码识别检测-opencv二维码识别检测机器视觉该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!更多资料,项目分享:https://gitee.com/dancheng-senior/postgraduate1二维码检测物体检测就是对数字图像中一类特定的物体
- matlab计算正交变换,图像的正交变换matlab.pdf
大Victor
matlab计算正交变换
图像的正交变换matlab《数字图像处理》课程实验报告实验名:图像的正交变换实验1院系:自动化测试与控制系班级:1201132姓名:李丹阳学号:1120110113哈尔滨工业大学电气工程及自动化学院光电信息工程2015年12月13日一、实验原理二、实验内容三、实验结果与分析1、傅立叶变换A)绘制一个二值图像矩阵,并将其傅立叶函数可视化。(傅里叶变换A)的实验结果B)利用傅立叶变换分析两幅图像的相关
- linux上存储和读取bmp图像文件
anranjingsi
linux
将图像数据写bmp文件数字图像在外存储器设备中的存储形式是图像文件,图像必须按照某个已知的、公认的数据存储顺序和结构进行存储,才能使不同的程序对图像文件顺利进行打开或存盘操作,实现数据共享。图像数据在文件中的存储顺序和结构称为图像文件格式。BMP文件是Windows操作系统所推荐和支持的图像文件格式,是一种将内存或显示器的图像数据不经过压缩而直接按位存盘的文件格式,所以称为位图(bitmap)文件
- python代码进行图像配准
@爱编程的郭同学
pythonopencv开发语言
这段代码演示了如何使用ORB特征检测器和特征匹配来进行图像配准。图像配准是将两幅图像对齐,使得它们在同一空间中表现出相似的视觉内容。一、效果图展示二、代码importcv2importnumpyasnp#读取两张图像#image1是RGBimage2是高光谱相机拍的伪RGB#iamge1和iamge2尺寸可以是不一样的image1=cv2.imread('datasets/image/ccc.bm
- python中绘制数组直方图一维数组划分10组_opencv-python 绘制直方图和均衡化
weixin_39607935
直方图什么是直方图?一个数字图像是由像素点组成的,每个像素点在计算机里都是以二进制代码存储的,通常都是8bit编码,也就是说一个像素的可能值是00H到FFH,如果是灰度图像,那么每个像素值便代表它的灰度值,如果是RGB三通道图像,每个像素值是一个数组比如[60,40,244]它代表每个通道的灰度值。直方图用来统计每个灰度值出现的次数。也就是每个灰度值出现的频数,横坐标是像素点的值,比如8bit编码
- 图片的位深度
HWL5679
人工智能计算机视觉深度学习
图片的位深度(bitdepth)是描述数字图像中颜色深度和细节的一个重要参数。它决定了图像中每个像素可以显示的颜色数量,从而影响了图像的色彩丰富度和质量。位深度是通过指定用于表示每种颜色的二进制位数(0和1)来量化的。对于灰度图像,位深度量化了有多少独特的阴影可用;对于彩色图像,每种原色(红色、绿色和蓝色)通常由其位深度指定的强度值范围来表示。每种原色的位深度称为“每通道位数”,而所有三个颜色通道
- OpenCV-39 图像直方图
一道秘制的小菜
OpenCVopencv计算机视觉图像处理人工智能numpypython
一、图像直方图的基本概念在统计学中,直方图是一种对数据情况的图形表示,是一种二维统计图表。图像直方图是一种表示数字图像中亮度分布的直方图,标绘了图像中每个亮度值得像素数。可以借助观察该直方图了解需要如何调整亮度分布的直方图。这种直方图中,横坐标得左侧为纯黑、较暗的区域,而右侧为较亮,纯白的区域。因此,一张较暗图片得直方图中得数据多集中于左侧和中间部分,而整体明亮、只有少量阴影得图像则相反。横坐标:
- MATLAB--数字图像处理 图像几何变换
海轰Pro
一、实验名称图像的几何变换二、实验目的1.熟悉MATLAB软件的使用。2.掌握图像几何变换的原理及数学运算。3.于MATLAB环境下编程实现对图片不同的几何变换。三、实验内容1.将图像绕图像中心顺时针旋转30度,旋转之后的图像尺寸保持为原图像的尺寸。2.将原图像放大2倍3.得到该图像的水平镜像图片4.得到该图像的垂直错切图像四、实验仪器与设备Win1064位电脑MATLAB2017a五、实验原理图
- Python用GAN生成对抗性神经网络判别模型拟合多维数组、分类识别手写数字图像可视化
数据挖掘深度学习机器学习算法
全文链接:https://tecdat.cn/?p=33566原文出处:拓端数据部落公众号生成对抗网络(GAN)是一种神经网络,可以生成类似于人类产生的材料,如图像、音乐、语音或文本。最近我们被客户要求撰写关于GAN生成对抗性神经网络的研究报告,包括一些图形和统计输出。近年来,GAN一直是研究的热门话题。Facebook的AI研究总监YannLeCun称对抗训练是“过去10年中最有趣的机器学习领域
- 《数字图像处理-OpenCV/Python》连载:形态学图像处理
youcans_
opencvpython图像处理计算机视觉人工智能
《数字图像处理-OpenCV/Python》连载:形态学图像处理本书京东优惠购书链接https://item.jd.com/14098452.html本书CSDN独家连载专栏https://blog.csdn.net/youcans/category_12418787.html第12章形态学图像处理形态学图像处理是基于形状的图像处理,基本思想是利用各种形状的结构元进行形态学运算,从图像中提取表达和
- UI设计必备工具之活学活用
优雅小丹
UI设计必备工具活学活用工欲善其事,必先利其器。一个优秀的设计师,相关软件的熟练使用是一个重要的因素。随着移动端设备的普及,产品开发速度越来越快,相应的UI设计软件也层出不穷。下面让我们认识一下最经典的UI设计使用工具和最近的软件新秀。PS-AdobePhotoshopPhotoshop主要处理以像素所构成的数字图像。使用其众多的编修与绘图工具,可以有效地进行图片编辑工作。PS有很多功能,在图像、
- ASM系列四 利用Method 组件动态注入方法逻辑
lijingyao8206
字节码技术jvmAOP动态代理ASM
这篇继续结合例子来深入了解下Method组件动态变更方法字节码的实现。通过前面一篇,知道ClassVisitor 的visitMethod()方法可以返回一个MethodVisitor的实例。那么我们也基本可以知道,同ClassVisitor改变类成员一样,MethodVIsistor如果需要改变方法成员,注入逻辑,也可以
- java编程思想 --内部类
百合不是茶
java内部类匿名内部类
内部类;了解外部类 并能与之通信 内部类写出来的代码更加整洁与优雅
1,内部类的创建 内部类是创建在类中的
package com.wj.InsideClass;
/*
* 内部类的创建
*/
public class CreateInsideClass {
public CreateInsideClass(
- web.xml报错
crabdave
web.xml
web.xml报错
The content of element type "web-app" must match "(icon?,display-
name?,description?,distributable?,context-param*,filter*,filter-mapping*,listener*,servlet*,s
- 泛型类的自定义
麦田的设计者
javaandroid泛型
为什么要定义泛型类,当类中要操作的引用数据类型不确定的时候。
采用泛型类,完成扩展。
例如有一个学生类
Student{
Student(){
System.out.println("I'm a student.....");
}
}
有一个老师类
- CSS清除浮动的4中方法
IT独行者
JavaScriptUIcss
清除浮动这个问题,做前端的应该再熟悉不过了,咱是个新人,所以还是记个笔记,做个积累,努力学习向大神靠近。CSS清除浮动的方法网上一搜,大概有N多种,用过几种,说下个人感受。
1、结尾处加空div标签 clear:both 1 2 3 4
.div
1
{
background
:
#000080
;
border
:
1px
s
- Cygwin使用windows的jdk 配置方法
_wy_
jdkwindowscygwin
1.[vim /etc/profile]
JAVA_HOME="/cgydrive/d/Java/jdk1.6.0_43" (windows下jdk路径为D:\Java\jdk1.6.0_43)
PATH="$JAVA_HOME/bin:${PATH}"
CLAS
- linux下安装maven
无量
mavenlinux安装
Linux下安装maven(转) 1.首先到Maven官网
下载安装文件,目前最新版本为3.0.3,下载文件为
apache-maven-3.0.3-bin.tar.gz,下载可以使用wget命令;
2.进入下载文件夹,找到下载的文件,运行如下命令解压
tar -xvf apache-maven-2.2.1-bin.tar.gz
解压后的文件夹
- tomcat的https 配置,syslog-ng配置
aichenglong
tomcathttp跳转到httpssyslong-ng配置syslog配置
1) tomcat配置https,以及http自动跳转到https的配置
1)TOMCAT_HOME目录下生成密钥(keytool是jdk中的命令)
keytool -genkey -alias tomcat -keyalg RSA -keypass changeit -storepass changeit
- 关于领号活动总结
alafqq
活动
关于某彩票活动的总结
具体需求,每个用户进活动页面,领取一个号码,1000中的一个;
活动要求
1,随机性,一定要有随机性;
2,最少中奖概率,如果注数为3200注,则最多中4注
3,效率问题,(不能每个人来都产生一个随机数,这样效率不高);
4,支持断电(仍然从下一个开始),重启服务;(存数据库有点大材小用,因此不能存放在数据库)
解决方案
1,事先产生随机数1000个,并打
- java数据结构 冒泡排序的遍历与排序
百合不是茶
java
java的冒泡排序是一种简单的排序规则
冒泡排序的原理:
比较两个相邻的数,首先将最大的排在第一个,第二次比较第二个 ,此后一样;
针对所有的元素重复以上的步骤,除了最后一个
例题;将int array[]
- JS检查输入框输入的是否是数字的一种校验方法
bijian1013
js
如下是JS检查输入框输入的是否是数字的一种校验方法:
<form method=post target="_blank">
数字:<input type="text" name=num onkeypress="checkNum(this.form)"><br>
</form>
- Test注解的两个属性:expected和timeout
bijian1013
javaJUnitexpectedtimeout
JUnit4:Test文档中的解释:
The Test annotation supports two optional parameters.
The first, expected, declares that a test method should throw an exception.
If it doesn't throw an exception or if it
- [Gson二]继承关系的POJO的反序列化
bit1129
POJO
父类
package inheritance.test2;
import java.util.Map;
public class Model {
private String field1;
private String field2;
private Map<String, String> infoMap
- 【Spark八十四】Spark零碎知识点记录
bit1129
spark
1. ShuffleMapTask的shuffle数据在什么地方记录到MapOutputTracker中的
ShuffleMapTask的runTask方法负责写数据到shuffle map文件中。当任务执行完成成功,DAGScheduler会收到通知,在DAGScheduler的handleTaskCompletion方法中完成记录到MapOutputTracker中
- WAS各种脚本作用大全
ronin47
WAS 脚本
http://www.ibm.com/developerworks/cn/websphere/library/samples/SampleScripts.html
无意中,在WAS官网上发现的各种脚本作用,感觉很有作用,先与各位分享一下
获取下载
这些示例 jacl 和 Jython 脚本可用于在 WebSphere Application Server 的不同版本中自
- java-12.求 1+2+3+..n不能使用乘除法、 for 、 while 、 if 、 else 、 switch 、 case 等关键字以及条件判断语句
bylijinnan
switch
借鉴网上的思路,用java实现:
public class NoIfWhile {
/**
* @param args
*
* find x=1+2+3+....n
*/
public static void main(String[] args) {
int n=10;
int re=find(n);
System.o
- Netty源码学习-ObjectEncoder和ObjectDecoder
bylijinnan
javanetty
Netty中传递对象的思路很直观:
Netty中数据的传递是基于ChannelBuffer(也就是byte[]);
那把对象序列化为字节流,就可以在Netty中传递对象了
相应的从ChannelBuffer恢复对象,就是反序列化的过程
Netty已经封装好ObjectEncoder和ObjectDecoder
先看ObjectEncoder
ObjectEncoder是往外发送
- spring 定时任务中cronExpression表达式含义
chicony
cronExpression
一个cron表达式有6个必选的元素和一个可选的元素,各个元素之间是以空格分隔的,从左至右,这些元素的含义如下表所示:
代表含义 是否必须 允许的取值范围 &nb
- Nutz配置Jndi
ctrain
JNDI
1、使用JNDI获取指定资源:
var ioc = {
dao : {
type :"org.nutz.dao.impl.NutDao",
args : [ {jndi :"jdbc/dataSource"} ]
}
}
以上方法,仅需要在容器中配置好数据源,注入到NutDao即可.
- 解决 /bin/sh^M: bad interpreter: No such file or directory
daizj
shell
在Linux中执行.sh脚本,异常/bin/sh^M: bad interpreter: No such file or directory。
分析:这是不同系统编码格式引起的:在windows系统中编辑的.sh文件可能有不可见字符,所以在Linux系统下执行会报以上异常信息。
解决:
1)在windows下转换:
利用一些编辑器如UltraEdit或EditPlus等工具
- [转]for 循环为何可恨?
dcj3sjt126com
程序员读书
Java的闭包(Closure)特征最近成为了一个热门话题。 一些精英正在起草一份议案,要在Java将来的版本中加入闭包特征。 然而,提议中的闭包语法以及语言上的这种扩充受到了众多Java程序员的猛烈抨击。
不久前,出版过数十本编程书籍的大作家Elliotte Rusty Harold发表了对Java中闭包的价值的质疑。 尤其是他问道“for 循环为何可恨?”[http://ju
- Android实用小技巧
dcj3sjt126com
android
1、去掉所有Activity界面的标题栏
修改AndroidManifest.xml 在application 标签中添加android:theme="@android:style/Theme.NoTitleBar"
2、去掉所有Activity界面的TitleBar 和StatusBar
修改AndroidManifes
- Oracle 复习笔记之序列
eksliang
Oracle 序列sequenceOracle sequence
转载请出自出处:http://eksliang.iteye.com/blog/2098859
1.序列的作用
序列是用于生成唯一、连续序号的对象
一般用序列来充当数据库表的主键值
2.创建序列语法如下:
create sequence s_emp
start with 1 --开始值
increment by 1 --増长值
maxval
- 有“品”的程序员
gongmeitao
工作
完美程序员的10种品质
完美程序员的每种品质都有一个范围,这个范围取决于具体的问题和背景。没有能解决所有问题的
完美程序员(至少在我们这个星球上),并且对于特定问题,完美程序员应该具有以下品质:
1. 才智非凡- 能够理解问题、能够用清晰可读的代码翻译并表达想法、善于分析并且逻辑思维能力强
(范围:用简单方式解决复杂问题)
- 使用KeleyiSQLHelper类进行分页查询
hvt
sql.netC#asp.nethovertree
本文适用于sql server单主键表或者视图进行分页查询,支持多字段排序。KeleyiSQLHelper类的最新代码请到http://hovertree.codeplex.com/SourceControl/latest下载整个解决方案源代码查看。或者直接在线查看类的代码:http://hovertree.codeplex.com/SourceControl/latest#HoverTree.D
- SVG 教程 (三)圆形,椭圆,直线
天梯梦
svg
SVG <circle> SVG 圆形 - <circle>
<circle> 标签可用来创建一个圆:
下面是SVG代码:
<svg xmlns="http://www.w3.org/2000/svg" version="1.1">
<circle cx="100" c
- 链表栈
luyulong
java数据结构
public class Node {
private Object object;
private Node next;
public Node() {
this.next = null;
this.object = null;
}
public Object getObject() {
return object;
}
public
- 基础数据结构和算法十:2-3 search tree
sunwinner
Algorithm2-3 search tree
Binary search tree works well for a wide variety of applications, but they have poor worst-case performance. Now we introduce a type of binary search tree where costs are guaranteed to be loga
- spring配置定时任务
stunizhengjia
springtimer
最近因工作的需要,用到了spring的定时任务的功能,觉得spring还是很智能化的,只需要配置一下配置文件就可以了,在此记录一下,以便以后用到:
//------------------------定时任务调用的方法------------------------------
/**
* 存储过程定时器
*/
publi
- ITeye 8月技术图书有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的8月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
8月试读活动回顾:
http://webmaster.iteye.com/blog/2102830
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《跨终端Web》
gleams:http