Hadoop HDFS 分布式文件系统DFS简介
HDFS的系统组成介绍
HDFS的组成部分详解
副本存放策略及路由规则
命令行接口
Java接口
客户端与HDFS的数据流讲解
掌握hdfs的shell操作
掌握hdfs的java api操作
理解hdfs的工作原理
设计思想
分而治之:将大文件、大批量文件,分布式存放在大量服务器上,以便于采取分而治之的方式对海量数据进行运算分析;
在大数据系统中作用:
为各类分布式运算框架(如:mapreduce,spark,tez,……)提供数据存储服务
重点概念:文件切块,副本存放,元数据
补充:
hdfs是架在本地文件系统上面的分布式文件系统,它就是个软件,也就是用一套代码把底下所有机器的硬盘变成一个软件下的目录,和mysql没有什么区别,思想一样。
mysql 本质是一个解析器,把sql变成io去读文件,再把数据转换出来给用户,存文件的底层就是使用linux或者windows的文件系统,文件名就是表名,目录名就是库名。
首先,它是一个文件系统,用于存储文件,通过统一的命名空间——目录树来定位文件
其次,它是分布式的,由很多服务器联合起来实现其功能,集群中的服务器有各自的角色;
重要特性如下:
(1)HDFS中的文件在物理上是分块存储(block),块的大小可以通过配置参数( dfs.blocksize)来规定,默认大小在hadoop2.x版本中是128M,老版本中是64M
(2)HDFS文件系统会给客户端提供一个统一的抽象目录树,客户端通过路径来访问文件,形如:hdfs://namenode:port/dir-a/dir-b/dir-c/file.data
(3)**目录结构及文件分块信息(元数据)**的管理由namenode节点承担
——namenode是HDFS集群主节点,负责维护整个hdfs文件系统的目录树,以及每一个路径(文件)所对应的block块信息(block的id,及所在的datanode服务器)
(4)文件的各个block的存储管理由datanode节点承担
---- datanode是HDFS集群从节点,每一个block都可以在多个datanode上存储多个副本(副本数量也可以通过参数设置dfs.replication)
补充:同一个block不会存储多份(大于1)在同一个datanode上,因为这样没有意义。
(5)HDFS是设计成适应一次写入,多次读出的场景,且不支持文件的修改
(注:适合用来做数据分析,并不适合用来做网盘应用,因为,不便修改,延迟大,网络开销大,成本太高)
[-appendToFile <localsrc> ... <dst>]
[-cat [-ignoreCrc] <src> ...]
[-checksum <src> ...]
[-chgrp [-R] GROUP PATH...]
[-chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...]
[-chown [-R] [OWNER][:[GROUP]] PATH...]
[-copyFromLocal [-f] [-p] <localsrc> ... <dst>]
[-copyToLocal [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]
[-count [-q] <path> ...]
[-cp [-f] [-p] <src> ... <dst>]
[-createSnapshot <snapshotDir> [<snapshotName>]]
[-deleteSnapshot <snapshotDir> <snapshotName>]
[-df [-h] [<path> ...]]
[-du [-s] [-h] <path> ...]
[-expunge]
[-get [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]
[-getfacl [-R] <path>]
[-getmerge [-nl] <src> <localdst>]
[-help [cmd ...]]
[-ls [-d] [-h] [-R] [<path> ...]]
[-mkdir [-p] <path> ...]
[-moveFromLocal <localsrc> ... <dst>]
[-moveToLocal <src> <localdst>]
[-mv <src> ... <dst>]
[-put [-f] [-p] <localsrc> ... <dst>]
[-renameSnapshot <snapshotDir> <oldName> <newName>]
[-rm [-f] [-r|-R] [-skipTrash] <src> ...]
[-rmdir [--ignore-fail-on-non-empty] <dir> ...]
[-setfacl [-R] [{-b|-k} {-m|-x <acl_spec>} <path>]|[--set <acl_spec> <path>]]
[-setrep [-R] [-w] <rep> <path> ...]
[-stat [format] <path> ...]
[-tail [-f] <file>]
[-test -[defsz] <path>]
[-text [-ignoreCrc] <src> ...]
[-touchz <path> ...]
[-usage [cmd ...]]
-help
功能:输出这个命令参数手册
-ls
功能:显示目录信息
示例: hadoop fs -ls hdfs://hadoop-server01:9000/
备注:这些参数中,所有的hdfs路径都可以简写
–>hadoop fs -ls / 等同于上一条命令的效果
==-mkdir ==
功能:在hdfs上创建目录
示例:hadoop fs -mkdir -p /aaa/bbb/cc/dd
-moveFromLocal
功能:从本地剪切粘贴到hdfs
示例:hadoop fs - moveFromLocal /home/hadoop/a.txt /aaa/bbb/cc/dd
-moveToLocal
功能:从hdfs剪切粘贴到本地
示例:hadoop fs - moveToLocal /aaa/bbb/cc/dd /home/hadoop/a.txt
–appendToFile
功能:追加一个文件到已经存在的文件末尾
示例:hadoop fs -appendToFile ./hello.txt hdfs://hadoop-server01:9000/hello.txt
可以简写为:
Hadoop fs -appendToFile ./hello.txt /hello.txt
-cat
功能:显示文件内容
示例:hadoop fs -cat /hello.txt
-tail
功能:显示一个文件的末尾
示例:hadoop fs -tail /weblog/access_log.1
-text
功能:以字符形式打印一个文件的内容
示例:hadoop fs -text /weblog/access_log.1
-chgrp
-chmod
-chown
功能:这三个命令跟linux文件系统中的用法一样,对文件所属权限
示例:
hadoop fs -chmod 666 /hello.txt
hadoop fs -chown someuser:somegrp /hello.txt
-copyFromLocal
功能:从本地文件系统中拷贝文件到hdfs路径去
示例:hadoop fs -copyFromLocal ./jdk.tar.gz /aaa/
-copyToLocal
功能:从hdfs拷贝到本地
示例:hadoop fs -copyToLocal /aaa/jdk.tar.gz
-cp
功能:从hdfs的一个路径拷贝hdfs的另一个路径
示例: hadoop fs -cp /aaa/jdk.tar.gz /bbb/jdk.tar.gz.2
-mv
功能:在hdfs目录中移动文件
示例: hadoop fs -mv /aaa/jdk.tar.gz /
-get
功能:等同于copyToLocal,就是从hdfs下载文件到本地
示例:hadoop fs -get /aaa/jdk.tar.gz
-getmerge
功能:合并下载多个文件
示例:比如hdfs的目录 /aaa/下有多个文件:log.1, log.2,log.3,…
hadoop fs -getmerge /aaa/log.* ./log.sum
-put
功能:等同于copyFromLocal
示例:hadoop fs -put /aaa/jdk.tar.gz /bbb/jdk.tar.gz.2
-rm
功能:删除文件或文件夹
示例:hadoop fs -rm -r /aaa/bbb/
-rmdir
功能:删除空目录
示例:hadoop fs -rmdir /aaa/bbb/ccc
-df
功能:统计文件系统的可用空间信息
示例:hadoop fs -df -h /
-du
功能:统计文件夹的大小信息
示例:
hadoop fs -du -s -h /aaa/*
-count
功能:统计一个指定目录下的文件节点数量
示例:hadoop fs -count /aaa/
-setrep
功能:设置hdfs中文件的副本数量
示例:hadoop fs -setrep 3 /aaa/jdk.tar.gz
补充: hadoop dfsadmin -report 用这个命令可以快速定位出哪些节点down掉了,HDFS的容量以及使用了多少,以及每个节点的硬盘使用情况。
(工作机制的学习主要是为加深对分布式系统的理解,以及增强遇到各种问题时的分析解决能力,形成一定的集群运维能力)
注:很多不是真正理解hadoop技术体系的人会常常觉得HDFS可用于网盘类应用,但实际并非如此。要想将技术准确用在恰当的地方,必须对技术有深刻的理解
客户端要向HDFS写数据,首先要跟namenode通信以确认可以写文件并获得接收文件block的datanode,然后,客户端按顺序将文件逐个block传递给相应datanode,并由接收到block的datanode负责向其他datanode复制block的副本
客户端将要读取的文件路径发送给namenode,namenode获取文件的元信息(主要是block的存放位置信息)返回给客户端,客户端根据返回的信息找到相应datanode逐个获取文件的block并在客户端本地进行数据追加合并从而获得整个文件
学习目标:理解namenode的工作机制尤其是元数据管理机制,以增强对HDFS工作原理的理解,及培养hadoop集群运营中“性能调优”、“namenode”故障问题的分析解决能力
问题场景:
诸如此类问题的回答,都需要基于对namenode自身的工作原理的深刻理解
NAMENODE职责:
负责客户端请求的响应
元数据的管理(查询,修改)
namenode对数据的管理采用了三种存储形式:
A、内存中有一份完整的元数据(内存meta data)
B、磁盘有一个“准完整”的元数据镜像(fsimage)文件(在namenode的工作目录中)
C、用于衔接内存metadata和持久化元数据镜像fsimage之间的操作日志(edits文件)注:当客户端对hdfs中的文件进行新增或者修改操作,操作记录首先被记入edits日志文件中,当客户端操作成功后,相应的元数据会更新到内存meta.data中
补充:
1、fsimage文件是线性结构,都是0和1,很难查找或者修改某条数据,所以才会定期checkpoint。
2、edits记录的是操作步骤,类似于mysql的binlog
3、fsimage记录的是这个文件备份了几份,分别叫什么名称
4、secondary namenode建议不和namenode在一个节点启动,因为它会拷贝元数据,加载到内存生成fsimage,会占用namenode的内存。(最简版)
5、在hadoop的高可用机制+Federation机制中,没有SecondaryNamenode,可以通过启动SecondaryNamenode进行验证,会报一个错误:“它的功能被StandbyNamenode取代”。(在启动的那台机器的logs文件夹里面的SecondaryNamenode.log)。(完全版)
可以通过hdfs的一个工具来查看edits中的信息
bin/hdfs oev -i edits -o edits.xml
bin/hdfs oiv -i fsimage_0000000000000000087 -p XML -o fsimage.xml
每隔一段时间,会由secondary namenode将namenode上最新的edits(下载过的namenode会删除)和fsimage(第一次时会下载fsimage,以后不会)下载到secondary namenode中,并加载到内存进行merge(这个过程称为checkpoint)
checkpoint的详细过程
checkpoint操作的触发条件配置参数
dfs.namenode.checkpoint.check.period=60 #检查触发条件是否满足的频率,60秒
dfs.namenode.checkpoint.dir=file://KaTeX parse error: Expected 'EOF', got '#' at position 36: …/namesecondary #̲以上两个参数做checkpoi…{dfs.namenode.checkpoint.dir}
dfs.namenode.checkpoint.max-retries=3 #最大重试次数
dfs.namenode.checkpoint.period=3600 #两次checkpoint之间的时间间隔3600秒
dfs.namenode.checkpoint.txns=1000000 #两次checkpoint之间最大的操作记录
checkpoint的附带作用
namenode和secondary namenode的工作目录存储结构完全相同,所以,当namenode故障退出需要重新恢复时,可以从secondary namenode的工作目录中将fsimage拷贝到namenode的工作目录,以恢复namenode的元数据。
在第一次部署好Hadoop集群的时候,我们需要在NameNode(NN)节点上格式化磁盘:
$HADOOP_HOME/bin/hdfs namenode -format
格式化完成之后,将会在$ dfs. namenode .name.dir/current目录下如下的文件结构
current/
|-- VERSION
|-- edits_*
|-- fsimage_0000000000008547077
|-- fsimage_0000000000008547077.md5
`-- seen_txid
其中的dfs.name.dir是在hdfs-site.xml文件中配置的,默认值如下:
<property>
<name>dfs.name.dirname>
<value>file://${hadoop.tmp.dir}/dfs/namevalue>
property>
hadoop.tmp.dir是在core-site.xml中配置的,默认值如下
<property>
<name>hadoop.tmp.dirname>
<value>/tmp/hadoop-${user.name}value>
<description>A base for other temporary directories.description>
property>
dfs. namenode.name.dir属性可以配置多个目录,
如/data1/dfs/name,/data2/dfs/name,/data3/dfs/name,…。各个目录存储的文件结构和内容都完全一样,相当于备份,这样做的好处是当其中一个目录损坏了,也不会影响到Hadoop的元数据,特别是当其中一个目录是NFS(网络文件系统Network File System,NFS)之上,即使你这台机器损坏了,元数据也得到保存。
下面对$dfs. namenode .name.dir/current/目录下的文件进行解释。
#Fri Nov 15 19:47:46 CST 2013
namespaceID=934548976
clusterID=CID-cdff7d73-93cd-4783-9399-0a22e6dce196
cTime=0
storageType=NAME_NODE
blockpoolID=BP-893790215-192.168.24.72-1383809616115
layoutVersion=-47
其中
(1)、namespaceID是文件系统的唯一标识符,在文件系统首次格式化之后生成的;
(2)、storageType说明这个文件存储的是什么进程的数据结构信息(如果是DataNode,storageType=DATA_NODE);
(3)、cTime表示NameNode存储时间的创建时间,由于我的NameNode没有更新过,所以这里的记录值为0,以后对NameNode升级之后,cTime将会记录更新时间戳;
(4)、layoutVersion表示HDFS永久性数据结构的版本信息, 只要数据结构变更,版本号也要递减,此时的HDFS也需要升级,否则磁盘仍旧是使用旧版本的数据结构,这会导致新版本的NameNode无法使用;
(5)、clusterID是系统生成或手动指定的集群ID,在-clusterid选项中可以使用它;如下说明
a、使用如下命令格式化一个Namenode:
$HADOOP_HOME/bin/hdfs namenode -format [-clusterId
]
选择一个唯一的cluster_id,并且这个cluster_id不能与环境中其他集群有冲突。如果没有提供cluster_id,则会自动生成一个唯一的ClusterID。
b、使用如下命令格式化其他Namenode:
$HADOOP_HOME/bin/hdfs namenode -format -clusterId
c、升级集群至最新版本。在升级过程中需要提供一个ClusterID,例如:
$ HADOOP_PREFIX_HOME/bin/hdfs start namenode --config
$ HADOOP_CONF_DIR -upgrade -clusterId
如果没有提供ClusterID,则会自动生成一个ClusterID。
(6)、blockpoolID:是针对每一个Namespace所对应的blockpool的ID,上面的这个BP-893790215-192.168.24.72-1383809616115就是在我的ns1的namespace下的存储块池的ID,这个ID包括了其对应的NameNode节点的ip地址。
2. $dfs.namenode.name.dir/current/seen_txid非常重要,是存放transactionId的文件,format之后是0,它代表的是namenode里面的edits_*文件的尾数,namenode重启的时候,会按照seen_txid的数字,循序从头跑edits_0000001~到seen_txid的数字。所以当你的hdfs发生异常重启的时候,一定要比对seen_txid内的数字是不是你edits最后的尾数,不然会发生建置namenode时metaData的资料有缺少,导致误删Datanode上多余Block的资讯。
问题场景:
1、集群容量不够,怎么扩容?
2、如果有一些datanode宕机,该怎么办?
3、datanode明明已启动,但是集群中的可用datanode列表中就是没有,怎么办?
以上这类问题的解答,有赖于对datanode工作机制的深刻理解
1、Datanode工作职责:
存储管理用户的文件块数据
定期向namenode汇报自身所持有的block信息(通过心跳信息上报)
(这点很重要,因为,当集群中发生某些block副本失效时,集群如何恢复block初始副本数量的问题)
<property>
<name>dfs.blockreport.intervalMsecname>
<value>3600000value>
<description>Determines block reporting interval in milliseconds.description>
property>
2、Datanode掉线判断时限参数
datanode进程死亡或者网络故障造成datanode无法与namenode通信,namenode不会立即把该节点判定为死亡,要经过一段时间,这段时间暂称作超时时长。HDFS默认的超时时长为10分钟+30秒。如果定义超时时间为timeout,则超时时长的计算公式为:
timeout = 2 * heartbeat.recheck.interval + 10 * dfs.heartbeat.interval。
而默认的heartbeat.recheck.interval 大小为5分钟,dfs.heartbeat.interval默认为3秒。
需要注意的是hdfs-site.xml 配置文件中的heartbeat.recheck.interval的单位为毫秒,dfs.heartbeat.interval的单位为秒。所以,举个例子,如果heartbeat.recheck.interval设置为5000(毫秒),dfs.heartbeat.interval设置为3(秒,默认),则总的超时时间为40秒。
<property>
<name>heartbeat.recheck.intervalname>
<value>2000value>
property>
<property>
<name>dfs.heartbeat.intervalname>
<value>1value>
property>
上传一个文件,观察文件的block具体的物理存放情况:
在每一台datanode机器上的这个目录中能找到文件的切块:
/home/hadoop/app/hadoop-2.4.1/tmp/dfs/data/current/BP-193442119-192.168.2.120-1432457733977/current/finalized
其中的dfs.data.dir是在hdfs-site.xml文件中配置的,默认值如下:
<property>
<name>dfs.data.dirname>
<value>file://${hadoop.tmp.dir}/dfs/namevalue>
property>
dfs. datanode data.dir属性可以配置多个目录,
如/data1/dfs/ data,/data2/dfs/ data,/data3/dfs/ data,…。datanode配置多块磁盘后,会将这些磁盘统一看成它的空间。并发时有优势,可以往不同的磁盘写数据,磁盘可以并行。相当于扩容。
补充:block块默认128M,最小配置为1M
hdfs在生产应用中主要是客户端的开发,其核心步骤是从hdfs提供的api中构造一个HDFS的访问客户端对象,然后通过该客户端对象操作(增删改查)HDFS上的文件
<dependency>
<groupId>org.apache.hadoopgroupId>
<artifactId>hadoop-clientartifactId>
<version>2.6.1version>
dependency>
注:如需手动引入jar包,hdfs的jar包----hadoop的安装目录的share下
在java中操作hdfs,首先要获得一个客户端实例
Configuration conf = new Configuration()
FileSystem fs = FileSystem.get(conf)
而我们的操作目标是HDFS,所以获取到的fs对象应该是DistributedFileSystem的实例;
get方法是从何处判断具体实例化那种客户端类呢?
——从conf中的一个参数 fs.defaultFS的配置值判断;
如果我们的代码中没有指定fs.defaultFS,并且工程classpath下也没有给定相应的配置,conf中的默认值就来自于hadoop的jar包中的core-default.xml,默认值为: file:///,则获取的将不是一个DistributedFileSystem的实例,而是一个本地文件系统的客户端对象
public class HdfsClient {
FileSystem fs = null;
@Before
public void init() throws Exception {
// 构造一个配置参数对象,设置一个参数:我们要访问的hdfs的URI
// 从而FileSystem.get()方法就知道应该是去构造一个访问hdfs文件系统的客户端,以及hdfs的访问地址
// new Configuration();的时候,它就会去加载jar包中的hdfs-default.xml
// 然后再加载classpath下的hdfs-site.xml
Configuration conf = new Configuration();
conf.set("fs.defaultFS", "hdfs://hdp-node01:9000");
/**
* 参数优先级: 1、客户端代码中设置的值 2、classpath下的用户自定义配置文件 3、然后是服务器的默认配置
*/
conf.set("dfs.replication", "3");
// 获取一个hdfs的访问客户端,根据参数,这个实例应该是DistributedFileSystem的实例
// fs = FileSystem.get(conf);
// 如果这样去获取,那conf里面就可以不要配"fs.defaultFS"参数,而且,这个客户端的身份标识已经是hadoop用户
fs = FileSystem.get(new URI("hdfs://hdp-node01:9000"), conf, "hadoop");
}
/**
* 往hdfs上传文件
*
* @throws Exception
*/
@Test
public void testAddFileToHdfs() throws Exception {
// 要上传的文件所在的本地路径
Path src = new Path("g:/redis-recommend.zip");
// 要上传到hdfs的目标路径
Path dst = new Path("/aaa");
fs.copyFromLocalFile(src, dst);
fs.close();
}
/**
* 从hdfs中复制文件到本地文件系统
*
* @throws IOException
* @throws IllegalArgumentException
*/
@Test
public void testDownloadFileToLocal() throws IllegalArgumentException, IOException {
fs.copyToLocalFile(new Path("/jdk-7u65-linux-i586.tar.gz"), new Path("d:/"));
fs.close();
}
@Test
public void testMkdirAndDeleteAndRename() throws IllegalArgumentException, IOException {
// 创建目录
fs.mkdirs(new Path("/a1/b1/c1"));
// 删除文件夹 ,如果是非空文件夹,参数2必须给值true
fs.delete(new Path("/aaa"), true);
// 重命名文件或文件夹
fs.rename(new Path("/a1"), new Path("/a2"));
}
/**
* 查看目录信息,只显示文件
*
* @throws IOException
* @throws IllegalArgumentException
* @throws FileNotFoundException
*/
@Test
public void testListFiles() throws FileNotFoundException, IllegalArgumentException, IOException {
// 思考:为什么返回迭代器,而不是List之类的容器
RemoteIterator<LocatedFileStatus> listFiles = fs.listFiles(new Path("/"), true);
while (listFiles.hasNext()) {
LocatedFileStatus fileStatus = listFiles.next();
System.out.println(fileStatus.getPath().getName());
System.out.println(fileStatus.getBlockSize());
System.out.println(fileStatus.getPermission());
System.out.println(fileStatus.getLen());
BlockLocation[] blockLocations = fileStatus.getBlockLocations();
for (BlockLocation bl : blockLocations) {
System.out.println("block-length:" + bl.getLength() + "--" + "block-offset:" + bl.getOffset());
String[] hosts = bl.getHosts();
for (String host : hosts) {
System.out.println(host);
}
}
System.out.println("--------------为angelababy打印的分割线--------------");
}
}
/**
* 查看文件及文件夹信息
*
* @throws IOException
* @throws IllegalArgumentException
* @throws FileNotFoundException
*/
@Test
public void testListAll() throws FileNotFoundException, IllegalArgumentException, IOException {
FileStatus[] listStatus = fs.listStatus(new Path("/"));
String flag = "d-- ";
for (FileStatus fstatus : listStatus) {
if (fstatus.isFile()) flag = "f-- ";
System.out.println(flag + fstatus.getPath().getName());
}
}
}
/**
* 相对那些封装好的方法而言的更底层一些的操作方式
* 上层那些mapreduce spark等运算框架,去hdfs中获取数据的时候,就是调的这种底层的api
* @author
*
*/
public class StreamAccess {
FileSystem fs = null;
@Before
public void init() throws Exception {
Configuration conf = new Configuration();
fs = FileSystem.get(new URI("hdfs://hdp-node01:9000"), conf, "hadoop");
}
/**
* 通过流的方式上传文件到hdfs
* @throws Exception
*/
@Test
public void testUpload() throws Exception {
FSDataOutputStream outputStream = fs.create(new Path("/angelababy.love"), true);
FileInputStream inputStream = new FileInputStream("c:/angelababy.love");
IOUtils.copy(inputStream, outputStream);
}
@Test
public void testDownLoadFileToLocal() throws IllegalArgumentException, IOException{
//先获取一个文件的输入流----针对hdfs上的
FSDataInputStream in = fs.open(new Path("/jdk-7u65-linux-i586.tar.gz"));
//再构造一个文件的输出流----针对本地的
FileOutputStream out = new FileOutputStream(new File("c:/jdk.tar.gz"));
//再将输入流中数据传输到输出流
IOUtils.copyBytes(in, out, 4096);
}
/**
* hdfs支持随机定位进行文件读取,而且可以方便地读取指定长度
* 用于上层分布式运算框架并发处理数据
* @throws IllegalArgumentException
* @throws IOException
*/
@Test
public void testRandomAccess() throws IllegalArgumentException, IOException{
//先获取一个文件的输入流----针对hdfs上的
FSDataInputStream in = fs.open(new Path("/iloveyou.txt"));
//可以将流的起始偏移量进行自定义
in.seek(22);
//再构造一个文件的输出流----针对本地的
FileOutputStream out = new FileOutputStream(new File("c:/iloveyou.line.2.txt"));
IOUtils.copyBytes(in,out,19L,true);
}
/**
* 显示hdfs上文件的内容
* @throws IOException
* @throws IllegalArgumentException
*/
@Test
public void testCat() throws IllegalArgumentException, IOException{
FSDataInputStream in = fs.open(new Path("/iloveyou.txt"));
IOUtils.copyBytes(in, System.out, 1024);
}
}
在mapreduce 、spark等运算框架中,有一个核心思想就是将运算移往数据,或者说,就是要在并发计算中尽可能让运算本地化,这就需要获取数据所在位置的信息并进行相应范围读取
以下模拟实现:获取一个文件的所有block位置信息,然后读取指定block中的内容
@Test
public void testCat() throws IllegalArgumentException, IOException{
FSDataInputStream in = fs.open(new Path("/weblog/input/access.log.10"));
//拿到文件信息
FileStatus[] listStatus = fs.listStatus(new Path("/weblog/input/access.log.10"));
//获取这个文件的所有block的信息
BlockLocation[] fileBlockLocations = fs.getFileBlockLocations(listStatus[0], 0L, listStatus[0].getLen());
//第一个block的长度
long length = fileBlockLocations[0].getLength();
//第一个block的起始偏移量
long offset = fileBlockLocations[0].getOffset();
System.out.println(length);
System.out.println(offset);
//获取第一个block写入输出流
// IOUtils.copyBytes(in, System.out, (int)length);
byte[] b = new byte[4096];
FileOutputStream os = new FileOutputStream(new File("d:/block0"));
while(in.read(offset, b, 0, 4096)!=-1){
os.write(b);
offset += 4096;
if(offset>=length) return;
};
os.flush();
os.close();
in.close();
}
点击流日志每天都10T,在业务应用服务器上,需要准实时上传至数据仓库(Hadoop HDFS)上
一般上传文件都是在凌晨24点操作,由于很多种类的业务数据都要在晚上进行传输,为了减轻服务器的压力,避开高峰期。
如果需要伪实时的上传,则采用定时上传的方式
HDFS SHELL: hadoop fs –put xxxx.tar /data 还可以使用 Java Api
满足上传一个文件,不能满足定时、周期性传入。
定时调度器:
Linux crontab
crontab -e
*/5 * * * * $home/bin/command.sh //五分钟执行一次
系统会自动执行脚本,每5分钟一次,执行时判断文件是否符合上传规则,符合则上传
日志产生程序将日志生成后,产生一个一个的文件,使用滚动模式创建文件名。
日志生成的逻辑由业务系统决定,比如在log4j配置文件中配置生成规则,如:当xxxx.log 等于10G时,滚动生成新日志
log4j.logger.msg=info,msg
log4j.appender.msg=cn.maoxiangyi.MyRollingFileAppender
log4j.appender.msg.layout=org.apache.log4j.PatternLayout
log4j.appender.msg.layout.ConversionPattern=%m%n
log4j.appender.msg.datePattern='.'yyyy-MM-dd
log4j.appender.msg.Threshold=info
log4j.appender.msg.append=true
log4j.appender.msg.encoding=UTF-8
log4j.appender.msg.MaxBackupIndex=100
log4j.appender.msg.MaxFileSize=10GB
log4j.appender.msg.File=/home/hadoop/logs/log/access.log
细节:
1、如果日志文件后缀是1\2\3等数字,该文件满足需求可以上传的话。把该文件移动到准备上传的工作区间。
2、工作区间有文件之后,可以使用hadoop put命令将文件上传。
阶段问题:
1、待上传文件的工作区间的文件,在上传完成之后,是否需要删除掉。
使用ls命令读取指定路径下的所有文件信息,
ls | while read line
//判断line这个文件名称是否符合规则
if line=access.log.* (
将文件移动到待上传的工作区间
)
//批量上传工作区间的文件
hadoop fs –put xxx
脚本写完之后,配置linux定时任务,每5分钟运行一次。
1、日志收集文件收集数据,并将数据保存起来,效果如下:
2、上传程序通过crontab定时调度
3、程序运行时产生的临时文件
4、Hadoo hdfs上的效果
从外部购买数据,数据提供方会实时将数据推送到6台FTP服务器上,我方部署6台接口采集机来对接采集数据,并上传到HDFS中
提供商在FTP上生成数据的规则是以小时为单位建立文件夹(2016-03-11-10),每分钟生成一个文件(00.dat,01.data,02.dat,…)
提供方不提供数据备份,推送到FTP服务器的数据如果丢失,不再重新提供,且FTP服务器磁盘空间有限,最多存储最近10小时内的数据
由于每一个文件比较小,只有150M左右,因此,我方在上传到HDFS过程中,需要将15分钟时段的数据合并成一个文件上传到HDFS
为了区分数据丢失的责任,我方在下载数据时最好进行校验
本人程序媛一枚,因为离港澳较近,周末兼职港澳人肉代购。
欢迎各位大佬添加本人微信,还会经常有点赞活动送价值不菲的小礼品哦。
即使现在不需要代购,等以后有了女(男)朋友、有了宝宝就肯定会需要的喽。
动动手指头,扫码一下,就当是对本博文的支持嘛,也是对一个平凡、勤劳、勇敢、秀外慧中等等优点的程序媛莫大的支持哈。