最近开始整理python的资料,博主建立了一个qq群,希望给大家提供一个交流的同平台 938587844 。
python多线程有个全局解释器锁(global interpreter lock),这个锁的意思是任一时间只能有一个线程使用解释器,跟单cpu跑多个程序一个意思,大家都是轮着用的,这叫“并发”,不是“并行”。
多进程间共享数据,可以使用 multiprocessing.Value 和 multiprocessing.Array.
(2)python多线程与多进程的区别
在UNIX平台上,当某个进程终结之后,该进程需要被其父进程调用wait,否则进程成为僵尸进程(Zombie)。所以,有必要对每个Process对象调用join()方法 (实际上等同于wait)。对于多线程来说,由于只有一个进程,所以不存在此必要性。
多进程应该避免共享资源。在多线程中,我们可以比较容易地共享资源,比如使用全局变量或者传递参数。在多进程情况下,由于每个进程有自己独立的内存空间,以上方法并不合适。此时我们可以通过共享内存和Manager的方法来共享资源。但这样做提高了程序的复杂度,并因为同步的需要而降低了程序的效率。
Python引用了一个内存池(memory pool)机制,即Pymalloc机制(malloc:n.分配内存),用于管理对小块内存的申请和释放
内存池(memory pool)的概念:
当 创建大量消耗小内存的对象时,频繁调用new/malloc会导致大量的内存碎片,致使效率降低。内存池的概念就是预先在内存中申请一定数量的,大小相等 的内存块留作备用,当有新的内存需求时,就先从内存池中分配内存给这个需求,不够了之后再申请新的内存。这样做最显著的优势就是能够减少内存碎片,提升效率。
内存池的实现方式有很多,性能和适用范围也不一样。
python中的内存管理机制——Pymalloc:
python中的内存管理机制都有两套实现,一套是针对小对象,就是大小小于256bits时,pymalloc会在内存池中申请内存空间;当大于256bits,则会直接执行new/malloc的行为来申请内存空间。
关于释放内存方面,当一个对象的引用计数变为0时,python就会调用它的析构函数。在析构时,也采用了内存池机制,从内存池来的内存会被归还到内存池中,以避免频繁地释放动作。
lambda 函数是一个可以接收任意多个参数(包括可选参数)并且返回单个表达式值的函数。 lambda 函数不能包含命令,它们所包含的表达式不能超过一个。不要试图向lambda 函数中塞入太多的东西;如果你需要更复杂的东西,应该定义一个普通函数,然后想让它多长就多长。
a,b = 0, 1
while b<100:
print (b)
a;b = b;a+b
webbrowser模块提供了一个高级接口来显示基于Web的文档,大部分情况下只需要简单的调用open()方法。
webbrowser定义了如下的异常:
exception webbrowser.Error, 当浏览器控件发生错误是会抛出这个异常
webbrowser有以下方法:
webbrowser.open(url[, new=0[, autoraise=1]])
这个方法是在默认的浏览器中显示url, 如果new = 0, 那么url会在同一个浏览器窗口下打开,如果new = 1, 会打开一个新的窗口,如果new = 2, 会打开一个新的tab, 如果autoraise = true, 窗口会自动增长。
webbrowser.open_new(url)
在默认浏览器中打开一个新的窗口来显示url, 否则,在仅有的浏览器窗口中打开url
webbrowser.open_new_tab(url)
在默认浏览器中当开一个新的tab来显示url, 否则跟open_new()一样
webbrowser.get([name]) 根据name返回一个浏览器对象,如果name为空,则返回默认的浏览器
webbrowser.register(name, construtor[, instance])
注册一个名字为name的浏览器,如果这个浏览器类型被注册就可以用get()方法来获取。
与C表达式 bool ? a : b类似,但是bool and a or b,当 a 为假时,不会象C表达式 bool ? a : b 一样工作
应该将 and-or 技巧封装成一个函数:
def choose(bool, a, b):
return (bool and [a] or [b])[0]
因为 [a] 是一个非空列表,它永远不会为假。甚至 a 是 0 或 ‘’ 或其它假值,列表[a]为真,因为它有一个元素。
for x in reversed(sequence):
... # do something with x..
如果不是list, 最通用但是稍慢的解决方案是:
for i in range(len(sequence)-1, -1, -1):
x = sequence[i]
最近开始整理python的资料,博主建立了一个qq群,希望给大家提供一个交流的同平台 938587844 。
函数 描述
int(x [,base ]) 将x转换为一个整数
long(x [,base ]) 将x转换为一个长整数
float(x ) 将x转换到一个浮点数
complex(real [,imag ]) 创建一个复数
str(x ) 将对象 x 转换为字符串
repr(x ) 将对象 x 转换为表达式字符串
eval(str ) 用来计算在字符串中的有效Python表达式,并返回一个对象
tuple(s ) 将序列 s 转换为一个元组
list(s ) 将序列 s 转换为一个列表
chr(x ) 将一个整数转换为一个字符
unichr(x ) 将一个整数转换为Unicode字符
ord(x ) 将一个字符转换为它的整数值
hex(x ) 将一个整数转换为一个十六进制字符串
oct(x ) 将一个整数转换为一个八进制字符串
>>> l = tuple(iplist)
>>> print l
('217.169.209.2:6666', '192.227.139.106:7808', '110.4.12.170:83', '69.197.132.80:7808', '205.164.41.101:3128', '63.141.249.37:8089', '27.34.142.47:9090')
>>> t = list(l)
>>> print t
['217.169.209.2:6666', '192.227.139.106:7808', '110.4.12.170:83', '69.197.132.80:7808', '205.164.41.101:3128', '63.141.249.37:8089', '27.34.142.47:9090']
>>> l = [1,1,2,3,4,5,4]
>>> list(set(l))
[1, 2, 3, 4, 5]
或者
d = {}
for x in mylist:
d[x] = 1
mylist = list(d.keys())
#使用__metaclass__(元类)的高级python用法
class Singleton2(type):
def __init__(cls, name, bases, dict):
super(Singleton2, cls).__init__(name, bases, dict)
cls._instance = None
def __call__(cls, *args, **kw):
if cls._instance is None:
cls._instance = super(Singleton2, cls).__call__(*args, **kw)
return cls._instance
class MyClass3(object):
__metaclass__ = Singleton2
one = MyClass3()
two = MyClass3()
two.a = 3
print one.a
#3
print id(one)
#31495472
print id(two)
#31495472
print one == two
#True
print one is two
#True
#使用装饰器(decorator),
#这是一种更pythonic,更elegant的方法,
#单例类本身根本不知道自己是单例的,因为他本身(自己的代码)并不是单例的
def singleton(cls, *args, **kw):
instances = {}
def _singleton():
if cls not in instances:
instances[cls] = cls(*args, **kw)
return instances[cls]
return _singleton
@singleton
class MyClass4(object):
a = 1
def __init__(self, x=0):
self.x = x
one = MyClass4()
two = MyClass4()
two.a = 3
print one.a
#3
print id(one)
#29660784
print id(two)
#29660784
print one == two
#True
print one is two
#True
one.x = 1
print one.x
#1
print two.x
#1
标准库中的copy模块提供了两个方法来实现拷贝.一个方法是copy,它返回和参数包含内容一样的对象.
使用deepcopy方法,对象中的属性也被复制。
Python的except用来捕获所有异常,因为Python里面的每次错误都会抛出一个异常,所以每个程序的错误都被当作一个运行时错误。
pass语句什么也不做,一般作为占位符或者创建占位程序,pass语句不会执行任何操作
type()
range(start, stop[, step])
可以使用sub()方法来进行查询和替换,sub方法的格式为:sub(replacement, string[, count=0])
replacement是被替换成的文本
string是需要被替换的文本
count是一个可选参数,指最大被替换的数量
match()函数只检测RE是不是在string的开始位置匹配,search()会扫描整个string查找匹配, 也就是说match()只有在0位置匹配成功的话才有返回,如果不是开始位置匹配成功的话,match()就返回none
前者是贪婪匹配,会从头到尾匹配 xyz,而后者是非贪婪匹配,只匹配到第一个 >。
import random
random.random()
它会返回一个随机的0和1之间的浮点数
python实现发送和接收邮件功能主要用到poplib和smtplib模块。
poplib用于接收邮件,而smtplib负责发送邮件。
代码如下:
#! /usr/bin/env python
#coding=utf-8
import sys
import time
import poplib
import smtplib
#邮件发送函数
def send_mail():
try:
handle = smtplib.SMTP('smtp.126.com',25)
handle.login('[email protected]','**********')
msg = 'To: [email protected]\r\nFrom:[email protected]\r\nSubject:hello\r\n'
handle.sendmail('[email protected]','[email protected]',msg)
handle.close()
return 1
except:
return 0
#邮件接收函数
def accpet_mail():
try:
p=poplib.POP3('pop.126.com')
p.user('[email protected]')
p.pass_('**********')
ret = p.stat() #返回一个元组:(邮件数,邮件尺寸)
#p.retr('邮件号码')方法返回一个元组:(状态信息,邮件,邮件尺寸)
except poplib.error_proto,e:
print "Login failed:",e
sys.exit(1)
#运行当前文件时,执行sendmail和accpet_mail函数
if __name__ == "__main__":
send_mail()
accpet_mail()
【搜索圆方圆,获得“python教程”,“python下载”,“python入门”类相关信息。】