策略模式 (Strategy Pattern)又称政策模式,其定义一系列的算法,把它们一个个封装起来,并且使它们可以互相替换。封装的策略算法一般是独立的,策略模式根据输入来调整采用哪个算法。关键是策略的实现和使用分离。
注意: 本文可能用到一些编码技巧比如 IIFE(Immediately Invoked Function Expression, 立即调用函数表达式),ES6 的语法 let/const、箭头函数、rest 参数,短路运算符 等,如果还没接触过可以点击链接稍加学习 ~
现在电子产品种类繁多,尺寸多种多样,有时候你会忍不住想拆开看看里面啥样(想想小时候拆的玩具车还有遥控器),但是螺丝规格很多,螺丝刀尺寸也不少,如果每碰到一种规格就买一个螺丝刀,家里就得堆满螺丝刀了。所以现在人们都用多功能的螺丝刀套装,螺丝刀把只需要一个,碰到不同规格的螺丝只要换螺丝刀头就行了,很方便,体积也变小很多。
再举个栗子,一辆车的轮胎有很多规格,在泥泞路段开的多的时候可以用泥地胎,在雪地开得多可以用雪地胎,高速公路上开的多的时候使用高性能轮胎,针对不同使用场景更换不同的轮胎即可,不需更换整个车。
这些都是策略模式的实例,螺丝刀/车属于封装上下文,封装和使用不同的螺丝刀头/轮胎,螺丝刀头/轮胎这里就相当于策略,可以根据需求不同来更换不同的使用策略。
在这些场景中,有以下特点:
螺丝刀头/轮胎(策略)之间相互独立,但又可以相互替换;
螺丝刀/车(封装上下文)可以根据需要的不同选用不同的策略;
具体的例子我们用编程上的例子来演示,比较好量化。
场景是这样的,某个电商网站希望举办一个活动,通过打折促销来销售库存物品,有的商品满 100 减 30,有的商品满 200 减 80,有的商品直接8折出售(想起被双十一支配的恐惧),这样的逻辑交给我们,我们要怎样去实现呢。
function priceCalculate(discountType, price) {
if (discountType === 'minus100_30') { // 满100减30
return price - Math.floor(price / 100) * 30
}
else if (discountType === 'minus200_80') { // 满200减80
return price - Math.floor(price / 200) * 80
}
else if (discountType === 'percent80') { // 8折
return price * 0.8
}
}
priceCalculate('minus100_30', 270) // 输出: 210
priceCalculate('percent80', 250) // 输出: 200
通过判断输入的折扣类型来计算计算商品总价的方式,几个 if-else
就满足了需求,但是这样的做法的缺点也很明显:
priceCalculate
函数随着折扣类型的增多, if-else
判断语句会变得越来越臃肿;
如果增加了新的折扣类型或者折扣类型的算法有所改变,那么需要更改 priceCalculate
函数的实现,这是违反开放-封闭原则的;
可复用性差,如果在其他的地方也有类似这样的算法,但规则不一样,上述代码不能复用;
我们可以改造一下,将计算折扣的算法部分提取出来保存为一个对象,折扣的类型作为 key,这样索引的时候通过对象的键值索引调用具体的算法:
const DiscountMap = {
minus100_30: function(price) {
return price - Math.floor(price / 100) * 30
},
minus200_80: function(price) {
return price - Math.floor(price / 200) * 80
},
percent80: function(price) {
return price * 0.8
}
}
/* 计算总售价*/
function priceCalculate(discountType, price) {
return DiscountMap[discountType] && DiscountMap[discountType](price)
}
priceCalculate('minus100_30', 270)
priceCalculate('percent80', 250)
// 输出: 210
// 输出: 200
这样算法的实现和算法的使用就被分开了,想添加新的算法也变得十分简单:
DiscountMap.minus150_40 = function(price) {
return price - Math.floor(price / 150) * 40
}
如果你希望计算算法隐藏起来,那么可以借助 IIFE 使用闭包的方式,这时需要添加增加策略的入口,以方便扩展:
const PriceCalculate = (function() {
/* 售价计算方式 */
const DiscountMap = {
minus100_30: function(price) { // 满100减30
return price - Math.floor(price / 100) * 30
},
minus200_80: function(price) { // 满200减80
return price - Math.floor(price / 200) * 80
},
percent80: function(price) { // 8折
return price * 0.8
}
}
return {
priceClac: function(discountType, price) {
return DiscountMap[discountType] && DiscountMap[discountType](price)
},
addStrategy: function(discountType, fn) { // 注册新计算方式
if (DiscountMap[discountType]) return
DiscountMap[discountType] = fn
}
}
})()
PriceCalculate.priceClac('minus100_30', 270) // 输出: 210
PriceCalculate.addStrategy('minus150_40', function(price) {
return price - Math.floor(price / 150) * 40
})
PriceCalculate.priceClac('minus150_40', 270) // 输出: 230
这样算法就被隐藏起来,并且预留了增加策略的入口,便于扩展。
根据上面的例子提炼一下策略模式,折扣计算方式可以被认为是策略(Strategy),这些策略之间可以相互替代,而具体折扣的计算过程可以被认为是封装上下文(Context),封装上下文可以根据需要选择不同的策略。
主要有下面几个概念:
Context :封装上下文,根据需要调用需要的策略,屏蔽外界对策略的直接调用,只对外提供一个接口,根据需要调用对应的策略;
Strategy :策略,含有具体的算法,其方法的外观相同,因此可以互相代替;
StrategyMap :所有策略的合集,供封装上下文调用;
结构图如下:
下面使用通用化的方法实现一下。
const StrategyMap = {}
function context(type, ...rest) {
return StrategyMap[type] && StrategyMap[type](...rest)
}
StrategyMap.minus100_30 = function(price) {
return price - Math.floor(price / 100) * 30
}
context('minus100_30', 270) // 输出: 210
通用实现看起来似乎比较简单,这里分享一下项目实战。
这里举一个 Vue + ElementUI 项目中用到的例子,其他框架的项目原理也类似,和大家分享一下。
Element 的表格控件的 Column 接受一个 formatter
参数,用来格式化内容,其类型为函数,并且还可以接受几个特定参数,像这样:Function(row,column,cellValue,index)
。
以文件大小转化为例,后端经常会直接传 bit 单位的文件大小,那么前端需要根据后端的数据,根据需求转化为自己需要的单位的文件大小,比如 KB/MB。
首先实现文件计算的算法:
export const StrategyMap = {
/* Strategy 1: 将文件大小(bit)转化为 KB */
bitToKB: val => {
const num = Number(val)
return isNaN(num) ? val : (num / 1024).toFixed(0) + 'KB'
},
/* Strategy 2: 将文件大小(bit)转化为 MB */
bitToMB: val => {
const num = Number(val)
return isNaN(num) ? val : (num / 1024 / 1024).toFixed(1) + 'MB'
}
}
/* Context: 生成el表单 formatter */
const strategyContext = function(type, rowKey){
return function(row, column, cellValue, index){
StrategyMap[type](row[rowKey])
}
}
export default strategyContext
那么在组件中我们可以直接:
<template>
<el-table :data="tableData">
<el-table-column prop="date" label="日期"></el-table-column>
<el-table-column prop="name" label="文件名"></el-table-column>
<!-- 直接调用 strategyContext -->
<el-table-column prop="sizeKb" label="文件大小(KB)"
:formatter='strategyContext("bitToKB", "sizeKb")'>
</el-table-column>
<el-table-column prop="sizeMb" label="附件大小(MB)"
:formatter='strategyContext("bitToMB", "sizeMb")'>
</el-table-column>
</el-table>
</template>
<script type='text/javascript'>
import strategyContext from './strategyContext.js'
export default {
name: 'ElTableDemo',
data() {
return {
strategyContext,
tableData: [
{ date: '2019-05-02', name: '文件1', sizeKb: 1234, sizeMb: 1234426 },
{ date: '2019-05-04', name: '文件2', sizeKb: 4213, sizeMb: 8636152 }]
}
}
}
</script>
<style scoped></style>
代码实例可以参看 codepen - 策略模式实战
运行结果如下图:
除了表格中的 formatter 之外,策略模式也经常用在表单验证的场景,这里举一个 Vue + ElementUI 项目的例子,其他框架同理。
ElementUI 的 Form 表单 具有表单验证功能,用来校验用户输入的表单内容。实际需求中表单验证项一般会比较复杂,所以需要给每个表单项增加 validator 自定义校验方法。
我们可以像官网示例一样把表单验证都写在组件的状态 data
函数中,但是这样就不好复用使用频率比较高的表单验证方法了,这时我们可以结合策略模式和函数柯里化的知识来重构一下。首先我们在项目的工具模块(一般是 utils
文件夹)实现通用的表单验证方法:
// src/utils/validates.js
/* 姓名校验 由2-10位汉字组成 */
export function validateUsername(str) {
const reg = /^[\u4e00-\u9fa5]{2,10}$/
return reg.test(str)
}
/* 手机号校验 由以1开头的11位数字组成 */
export function validateMobile(str) {
const reg = /^1\d{10}$/
return reg.test(str)
}
/* 邮箱校验 */
export function validateEmail(str) {
const reg = /^[a-zA-Z0-9_-]+@[a-zA-Z0-9_-]+(\.[a-zA-Z0-9_-]+)+$/
return reg.test(str)
}
然后在 utils/index.js
中增加一个柯里化方法,用来生成表单验证函数:
// src/utils/index.js
import * as Validates from './validates.js'
/* 生成表格自定义校验函数 */
export const formValidateGene = (key, msg) => (rule, value, cb) => {
if (Validates[key](value)) {
cb()
} else {
cb(new Error(msg))
}
}
上面的 formValidateGene
函数接受两个参数,第一个是验证规则,也就是 src/utils/validates.js
文件中提取出来的通用验证规则的方法名,第二个参数是报错的话表单验证的提示信息。
<template>
<el-form ref="ruleForm"
label-width="100px"
class="demo-ruleForm"
:rules="rules"
:model="ruleForm">
<el-form-item label="用户名" prop="username">
<el-input v-model="ruleForm.username"></el-input>
</el-form-item>
<el-form-item label="手机号" prop="mobile">
<el-input v-model="ruleForm.mobile"></el-input>
</el-form-item>
<el-form-item label="邮箱" prop="email">
<el-input v-model="ruleForm.email"></el-input>
</el-form-item>
</el-form>
</template>
<script type='text/javascript'>
import * as Utils from '../utils'
export default {
name: 'ElTableDemo',
data() {
return {
ruleForm: { pass: '', checkPass: '', age: '' },
rules: {
username: [{
validator: Utils.formValidateGene('validateUsername', '姓名由2-10位汉字组成'),
trigger: 'blur'
}],
mobile: [{
validator: Utils.formValidateGene('validateMobile', '手机号由以1开头的11位数字组成'),
trigger: 'blur'
}],
email: [{
validator: Utils.formValidateGene('validateEmail', '不是正确的邮箱格式'),
trigger: 'blur'
}]
}
}
}
}
</script>
可以看见在使用的时候非常方便,把表单验证方法提取出来作为策略,使用柯里化方法动态选择表单验证方法,从而对策略灵活运用,大大加快开发效率。
代码实例可以参看 codesandbox - 策略模式表单验证实战
运行结果:
策略模式将算法的实现和使用拆分,这个特点带来了很多优点:
策略之间相互独立,但策略可以自由切换,这个策略模式的特点给策略模式带来很多灵活性,也提高了策略的复用率;
如果不采用策略模式,那么在选策略时一般会采用多重的条件判断,采用策略模式可以避免多重条件判断,增加可维护性;
可扩展性好,策略可以很方便的进行扩展;
策略模式的缺点:
策略相互独立,因此一些复杂的算法逻辑无法共享,造成一些资源浪费;
如果用户想采用什么策略,必须了解策略的实现,因此所有策略都需向外暴露,这是违背迪米特法则/最少知识原则的,也增加了用户对策略对象的使用成本。
那么应该在什么场景下使用策略模式呢:
多个算法只在行为上稍有不同的场景,这时可以使用策略模式来动态选择算法;
算法需要自由切换的场景;
有时需要多重条件判断,那么可以使用策略模式来规避多重条件判断的情况;
策略模式和模板方法模式的作用比较类似,但是结构和实现方式有点不一样。
策略模式 让我们在程序运行的时候动态地指定要使用的算法;
模板方法模式 是在子类定义的时候就已经确定了使用的算法;
见享元模式中的介绍。
如果你觉得这篇内容对你挺有启发,我想邀请你帮我三个小忙:
点个「在看」,让更多的人也能看到这篇内容(喜欢不点在看,都是耍流氓 -_-)
关注我的博客 https://github.com/SHERlocked93/blog,让我们成为长期关系
关注公众号「前端下午茶」,持续为你推送精选好文,也可以加我为好友,随时聊骚。