- hive表指定分区字段搜索_Hive学习-Hive基本操作(建库、建表、分区表、写数据)...
weixin_39710660
hive表指定分区字段搜索
hive简单认识Hive是建立在HDFS之上的数据仓库,所以Hive的数据全部存储在HDFS上。Hive的数据分为两部分,一部分是存在HDFS上的具体数据,一部分是描述这些具体数据的元数据信息,一般Hive的元数据存在MySQL上。Hive是类SQL语法的数据查询、计算、分析工具,执行引擎默认的是MapReduce,可以设置为Spark、Tez。Hive分内部表和外部表,外部表在建表的同时指定一个
- PyDeequ库在AWS EMR启动集群中数据质量检查功能的配置方法和实现代码
weixin_30777913
pythonspark大数据云计算aws
PyDeequ是一个基于ApacheSpark的PythonAPI,专门用于定义和执行“数据单元测试”,从而在大规模数据集中测量数据质量。PyDeequ框架在PySpark代码中提供了全面的数据质量检查功能,能够帮助用户&有效地监控和提升大规模数据集的数据质量。它在PySpark代码中的数据质量检查功能主要包括以下几个方面:核心组件指标计算(MetricsComputation):利用分析器(An
- spark 算子例子_Spark性能调优方法
不让爱你的人失望
spark算子例子
公众号后台回复关键词:pyspark,获取本项目github地址。Spark程序可以快如闪电⚡️,也可以慢如蜗牛?。它的性能取决于用户使用它的方式。一般来说,如果有可能,用户应当尽可能多地使用SparkSQL以取得更好的性能。主要原因是SparkSQL是一种声明式编程风格,背后的计算引擎会自动做大量的性能优化工作。基于RDD的Spark的性能调优属于坑非常深的领域,并且很容易踩到。我们将介绍Spa
- Spark性能调优
大数据侠客
spark相关问题汇总及解决spark性能调优
1、前言在大数据计算领域,Spark已经成为了越来越流行、越来越受欢迎的计算平台之一。Spark的功能涵盖了大数据领域的离线批处理、SQL类处理、流式/实时计算、机器学习、图计算等各种不同类型的计算操作,应用范围与前景非常广泛。在美团•大众点评,已经有很多同学在各种项目中尝试使用Spark。大多数同学(包括笔者在内),最初开始尝试使用Spark的原因很简单,主要就是为了让大数据计算作业的执行速度更
- 在AWS上使用KMS客户端密钥加密S3文件,同时支持PySpark读写和Snowflake导入
weixin_30777913
pythonspark大数据云计算数据仓库
现有AWSEMR集群上运行PySpark代码,可以读写S3上的数据文件,Snowflake数据仓库也需要导入S3上的文件到表。现在要用AWSKMS有客户端密钥加密S3上的文件,同时允许PySpark代码,可以读写S3上的数据文件,Snowflake数据仓库导入S3上的文件到表。为了实现AWSEMR上的PySpark读写KMS加密的S3文件,并让Snowflake导入这些文件,请按照以下步骤操作:一
- 11 Spark面试真题
TTXS123456789ABC
#Sparkspark面试大数据
11Spark大厂面试真题1.通常来说,Spark与MapReduce相比,Spark运行效率更高。请说明效率更高来源于Spark内置的哪些机制?2.hadoop和spark使用场景?3.spark如何保证宕机迅速恢复?4.hadoop和spark的相同点和不同点?5.RDD持久化原理?6.checkpoint检查点机制?7.checkpoint和持久化机制的区别?8.RDD机制理解吗?9.Spa
- OLAP引擎比较
小手追梦
hadooprpcjava
一,sparksql与dorisspark虽然是一个计算引擎,但sparksql也支持符合通用语法的sql查询,延迟为分钟级。doris是一个OLAP数据库,支持对大数据的复杂查询,延迟为秒级。doris比sparksql快,主要原因在于针对场景不同导致的架构不同。sparksql启动一个查询,需要进行资源调度、任务调度、任务分发,耗时更久。doris是常驻进程,启动一个doris查询后,快速的对
- 大数据毕业设计hadoop+spark+hive豆瓣图书数据分析可视化大屏 豆瓣图书爬虫 图书推荐系统
qq_79856539
javawebjava大数据hadoop课程设计
系统总体目标基于Spark的个性化书籍推荐系统是一种基于大数据技术的智能推荐系统,它可以根据用户的历史行为和偏好,为用户提供个性化的书籍推荐。该系统采用Spark技术,可以实现大数据的实时处理,从而提高推荐系统的准确性和可靠性。此外,该系统还可以根据用户的习惯和偏好,提供更加个性化的书籍推荐,从而满足用户的需求。系统的使用者包含普通用户和管理员两类,普通用户是系统的主要服务对象,主流人群是经常查看
- 【spark床头书系列】Spark Streaming 编程权威使用指南
BigDataMLApplication
spark大数据流数据处理#大数据spark大数据分布式
SparkStreaming编程权威使用指南文章目录SparkStreaming编程权威使用指南概述快速示例基本概念链接初始化StreamingContext离散化流(DStreams)输入DStreams和Receivers基本源文件流基于自定义接收器的流作为流的RDD队列高级源自定义源接收器的可靠性在DStreams上的转换操作updateStateByKey操作transform操作窗口操作
- Spark Streaming的背压机制的原理与实现代码及分析
weixin_30777913
spark大数据python
SparkStreaming的背压机制是一种根据JobScheduler反馈的作业执行信息来动态调整Receiver数据接收率的机制。在Spark1.5.0及以上版本中,可以通过设置spark.streaming.backpressure.enabled为true来启用背压机制。当启用背压机制时,SparkStreaming会自动根据系统的处理能力来调整数据的输入速率,从而在流量高峰时保证最大的吞
- 1-structedStreaming-基本流程(2.3.1)
github_28583061
javaspark大数据mysqlhadoop
基本流程--spark2.3.1新定义接口--中间使用了一些过度接口为了兼容老版本如:BaseStreamingSourceDataSource为一个类,定义了可插拔的数据源,对应一些列旧的数据源DataSourceV2spark2.3.1新接口,只是一个接口,没有任何方法,需要配合ReadSupport或者WriteSupport接口等一起MicroBatchReadSupport--实现创建M
- 1-structedStreaming-基本流程(2.2.1)
github_28583061
javaspark大数据hadoophive
基本流程spark2.2.1StructuredNetworkWordCount统计来自socket的wordcount创建stream,指定数据源DataStreamReader--从外部存储加载流数据的接口lines=spark.readStream.format("socket").option("host",host).option("port",port).load()加载数据流为Dat
- python 分布式集群_Python搭建Spark分布式集群环境
小国阁下
python分布式集群
前言ApacheSpark是一个新兴的大数据处理通用引擎,提供了分布式的内存抽象。Spark最大的特点就是快,可比HadoopMapReduce的处理速度快100倍。本文没有使用一台电脑上构建多个虚拟机的方法来模拟集群,而是使用三台电脑来搭建一个小型分布式集群环境安装。本教程采用Spark2.0以上版本(比如Spark2.0.2、Spark2.1.0等)搭建集群,同样适用于搭建Spark1.6.2
- 性能优化案例:通过合理设置spark.shuffle.memoryFraction参数的值来优化PySpark程序的性能
weixin_30777913
pythonspark大数据
在PySpark中,合理调整spark.shuffle.memoryFraction参数可以有效优化Shuffle阶段的性能,尤其是在存在大量磁盘溢出的场景下。通过合理设置spark.shuffle.memoryFraction并结合其他优化手段,可显著减少Shuffle阶段的磁盘I/O,提升PySpark作业的整体性能。以下是优化案例的总结及分步说明:优化背景问题现象:PySpark作业在Shu
- spark集群完全分布式搭建
。 。,。,。
分布式spark大数据
1.spark的运行架构(主从模式)主节点:master-----资源管理调度和任务的分配---------类似yarn从节点:worker-----执行具体的计算任务整体运行架构:编写spark运行程序用户将应用程序提交给spark集群驱动其会创建对应的编程入口(sparkcontext/sparksession)主节点复制资源管理调度和任务分配从节点执行计算任务(多个计算任务:每个计算任务会分
- 基于Python+Spark的气象天气分析大屏可视化系统设计与实现毕设源码
sj52abcd
pythonspark课程设计毕业设计
博主介绍:✌专注于VUE,小程序,安卓,Java,python,物联网专业,有17年开发经验,长年从事毕业指导,项目实战✌选取一个适合的毕业设计题目很重要。✌关注✌私信我✌具体的问题,我会尽力帮助你。研究的背景:随着我国气象事业的发展,气象数据的实时分析和可视化成为越来越重要的任务。然而,目前气象数据的分析与展示手段仍然较为传统,缺乏交互性,不能满足现代气象业务的需求。因此,研究一种基于Pytho
- 基于Spark的实时计算服务的流程架构
小小搬运工40
spark大数据
基于Spark的实时计算服务的流程架构通常涉及多个组件和步骤,从数据采集到数据处理,再到结果输出和监控。以下是一个典型的基于Spark的实时计算服务的流程架构:1.数据源数据源是实时计算服务的起点,常见的数据源包括:消息队列:如Kafka、RabbitMQ、AmazonKinesis等。日志系统:如Flume、Logstash等。传感器数据:物联网设备产生的数据流。数据库变更数据捕获(CDC):如
- RDD 算子全面解析:从基础到进阶与面试要点
天冬忘忧
Sparkspark大数据
Spark的介绍与搭建:从理论到实践_spark环境搭建-CSDN博客Spark的Standalone集群环境安装与测试-CSDN博客PySpark本地开发环境搭建与实践-CSDN博客Spark程序开发与提交:本地与集群模式全解析-CSDN博客SparkonYARN:Spark集群模式之Yarn模式的原理、搭建与实践-CSDN博客Spark中RDD的诞生:原理、操作与分区规则-CSDN博客Spar
- anaconda中pyspark_自学大数据——9 Anaconda安装与使用pyspark
步六孤陆
首先从Anaconda官网上下载Anaconda。一、解压安装包sudobashAnaconda3-2020.07-Linux-x86_64.shchown-Rhadoop:hadoop/opt/anaconda/vi/etc/profileexportANACONDA_HOME=/opt/anacondaexportPATH=$PATH:$ANACONDA_HOME/bin:source/etc
- PySpark数据处理过程简析
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介PySpark是ApacheSpark的PythonAPI,可以用Python进行分布式数据处理,它在内存中利用了ApacheHadoopYARN资源调度框架对数据进行并行处理。PySpark可以直接使用Hadoop文件系统、HDFS来存储数据,也可以通过S3、GCS、ADLS等云存储平台保存数据。因此,在不同的数据源之间移动数据时,只需要复制一次数据就可以完成
- 2022-02-09大数据学习日志——PySpark——Spark快速入门&Standalone集群
王络不稳定
sparkbigdata大数据
第一部分Spark快速入门01_Spark快速入门【Anaconda软件安装】[掌握]使用Python编写Spark代码,首先需要安装Python语言包,此时安装Anaconda科学数据分析包。Anaconda指的是一个开源的Python发行版本,其包含了conda、Python等180多个科学包及其依赖项。Anaconda是跨平台的,有Windows、MacOS、Linux版本。#下载地址:ht
- PySpark
rainyrainbow
大数据hadoop
1.PySpark的搭建https://blog.csdn.net/qq_36330643/article/details/78429109PySpark是Spark为Python开发者提供的API,位于$SPARK_HOME/bin目录,其依赖于Py4J。在Pycharm中配置使用spark1.在Pycharm中新建python项目,解释器使用的是python3.4File=>Settings切
- spark2如何集成到cdh里
蘑菇丁
经验hadoop大数据+机器学习+oracle
最近做性能测试需要spark2测试下和spark1.6性能有多大差别,官方文档里写着可以集成,但是自己怎么搞都不行,折磨了3天的时间,目前终于把spark2集成到集群里了我安装的是最新版本的下载spark2安装包wgethttp://archive.cloudera.com/beta/spark2/parcels/latest/SPARK2-2.0.0.cloudera.beta2-1.cdh5.
- 大数据之Spark运行流程
「已注销」
Spark大数据sparkhadoop
文章目录前言(一)SparkOnYarn集群的Client模式运行流程(二)SparkOnYarn集群的Cluster模式运行流程总结前言上篇文章有讨论到SparkOnYarn的两种部署模式,如果有不清楚的地方,可以再看看,附上对应文章的链接:Spark的部署模式,本篇文章主要讨论SparkOnYarn两种部署模式的运行流程。(一)SparkOnYarn集群的Client模式运行流程该模式的Dri
- xgboost-spark-scala
maokunnn
DMxgboostsparkscala
今天学习写scala,拿xgboost试一下~先记一下xgboost调参要点:7.xgboost中比较重要的参数介绍(1)objective[default=reg:linear]定义学习任务及相应的学习目标,可选的目标函数如下:“reg:linear”–线性回归。“reg:logistic”–逻辑回归。“binary:logistic”–二分类的逻辑回归问题,输出为概率。“binary:logi
- 大数据平台建设整体架构设计方案
AI天才研究院
ChatGPTAI大模型企业级应用开发实战大数据AI人工智能大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
《大数据平台建设整体架构设计方案》关键词:大数据平台、分布式存储、分布式计算、数据仓库、数据湖、数据安全、数据质量管理、数据治理、数据挖掘、机器学习、图计算、自然语言处理、Hadoop、Spark、Flink、项目规划、运维管理、最佳实践。摘要:本文将深入探讨大数据平台建设整体架构设计方案,从概述与核心概念、技术栈、建设实践、运维管理以及经验展望等多个方面进行详细阐述。通过梳理大数据平台的核心组成
- Scala简介
醉游江湖
scala
hadoop生态圈—>javaspark生态圈—>scala1.scala是面向对象的、面向函数的基于静态类型的编程语言。静态语言(强类型语言)静态语言是在编译时变量的数据类型即可确定的语言,多数静态类型语言要求在使用变量之前必须声明数据类型。例如:C++、Java、Delphi、C#,Scala等。scala编译后是字节码文件可以调用java源有的库动态语言(弱类型语言)动态语言是在运行时确定数
- spark官方配置参数详解
我丶怀念的
sparkscalads
以下是整理的Spark中的一些配置参数,官方文档请参考SparkConfiguration。Spark提供三个位置用来配置系统:Spark属性:控制大部分的应用程序参数,可以用SparkConf对象或者Java系统属性设置环境变量:可以通过每个节点的conf/spark-env.sh脚本设置。例如IP地址、端口等信息日志配置:可以通过log4j.properties配置Spark属性Spark属性
- 【spark床头书系列】如何在YARN上启动Spark官网权威详解说明
BigDataMLApplication
sparkspark大数据分布式
【spark床头书系列】如何在YARN上启动Spark官网权威详解说明点击这里看全文文章目录添加其他JAR文件准备工作配置调试应用程序Spark属性重要说明KerberosYARN特定的Kerberos配置Kerberos故障排除配置外部Shuffle服务使用ApacheOozie启动应用程序使用Spark历史服务器替代SparkWebUI官网链接确保HADOOP_CONF_DIR或者YARN_C
- xgboost在spark集群使用指南
一颗小草333
算法mapreducespark数据挖掘
简介XGBoost是一个优化的分布式梯度增强库,具有高效、灵活和可移植性。在梯度增强框架下实现了机器学习算法。XGBoost提供了一种并行树增强(也称为GBDT、GBM),可以快速、准确地解决许多数据科学问题。相同的代码在主要的分布式环境(Hadoop、SGE、MPI)上运行,可以解决数十亿个示例的训练问题。xgb相对于gbt所做的改进:1.2.3.XGBoost可以使用R、python、java
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla