YOLOv3 训练自己的数据集

1.VOC数据集准备

使用ImageLab软件数据标注产生与图片对应的.xml
YOLOv3 训练自己的数据集_第1张图片
Annotations存放xml文件,JPEGImages存放原图,labels存放annotation对应的txt文件,
deal.xml对xml文件修改(folder,filname,path,object的name),list.py划分train和val数据集产生train_0708.txt和val_0708.txt的原图路径列表,voc_label.py产生annotation对应的txt文件。

# coding=utf-8
import os
import xml.dom.minidom
import xml.etree.ElementTree as ET
xmlpath = "/media/ices/d171fa47-c64c-42f5-886e-92bc88e1f6a6/ices12/shiyou/Annotations/"
imgpath="/media/ices/d171fa47-c64c-42f5-886e-92bc88e1f6a6/ices12/shiyou/JPEGImages/"
newpath = "/media/ices/d171fa47-c64c-42f5-886e-92bc88e1f6a6/ices12/shiyou/Annotation/"
#files = os.listdir(path)  得到文件夹下所有文件名称
for xmlname in os.listdir(xmlpath):  # 遍历文件夹
    p = xmlpath+xmlname
    dom = xml.dom.minidom.parse(p)
    root = dom.documentElement
    epath = root.getElementsByTagName('path')
    folder =  root.getElementsByTagName('folder')
    epath[0].firstChild.data = imgpath+xmlname.split('.')[0]+'.jpg'
    folder[0].firstChild.data = 'JPEGImages'
    print epath[0].firstChild.data   
    with open(newpath+ xmlname, 'w') as fh:
        dom.writexml(fh)
        print '写入 '+xmlname+' OK!'

2.配置文件的修改

(1) Makfile

GPU=1 #如果使用GPU设置为1,CPU设置为0
CUDNN=1  #如果使用CUDNN设置为1,否则为0
OPENCV=0 #如果调用摄像头,还需要设置OPENCV为1,否则为0
OPENMP=0  #如果使用OPENMP设置为1,否则为0
DEBUG=0  #如果使用DEBUG设置为1,否则为0

CC=gcc
NVCC=/usr/local/cuda/bin/nvcc   #NVCC=nvcc 修改为自己的路径
AR=ar
ARFLAGS=rcs
OPTS=-Ofast
LDFLAGS= -lm -pthread 
COMMON= -Iinclude/ -Isrc/
CFLAGS=-Wall -Wno-unused-result -Wno-unknown-pragmas -Wfatal-errors -fPIC
...
ifeq ($(GPU), 1) 
COMMON+= -DGPU -I/usr/local/cuda/include/  #修改为自己的路径
CFLAGS+= -DGPU
LDFLAGS+= -L/home/hebao/cuda-9.0/lib64 -lcuda -lcudart -lcublas -lcurand  #修改为自己的路径
endif

(2) cfg(注意此处filters个数要修改三次!!!)

[net]
# Testing
# batch=1
# subdivisions=1
# Training
 batch=64
 subdivisions=8
......
[convolutional]
size=1
stride=1
pad=1
filters=30###((类别数目+1)×5)

activation=linear
[yolo]
mask = 6,7,8
anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
classes=5###20
num=9
jitter=.3
ignore_thresh = .5
truth_thresh = 1
random=0###1

......
[convolutional]
size=1
stride=1
pad=1
filters=30###75
activation=linear

[yolo]
mask = 3,4,5
anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
classes=5###20
num=9
jitter=.3
ignore_thresh = .5
truth_thresh = 1
random=0###1

......

[convolutional]
size=1
stride=1
pad=1
filters=30###75
activation=linear

[yolo]
mask = 0,1,2
anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
classes=5###20
num=9
jitter=.3
ignore_thresh = .5
truth_thresh = 1
random=0###1

(3) voc.data

classes= 5
train  = /media/ices/d171fa47-c64c-42f5-886e-92bc88e1f6a6/ices12/shiyou/train_0708.txt
valid  = /media/ices/d171fa47-c64c-42f5-886e-92bc88e1f6a6/ices12/shiyou/val_0708.txt
names = data/voc.names
backup = backup0708

(4) voc.names

car
truck
building
collapse
river

执行:sudo ./darknet detector train /home/ices/darknet/cfg/voc.data /home/ices/darknet/cfg/yolov3-voc0605.cfg /home/ices/darknet/backup0708/yolov3-voc0605.backup -gpus 0,1

3.测试

./darknet detector valid cfg/voc.data cfg/yolov3-voc0605.cfg backup3_1/yolov3-voc0605_final.weights -out g-
python 123.py /home/ices/darknet/results/g-1.txt /home/ices/darknet/V3/darknet/scripts/shiyou0605_val.txt 1

123.py

# --------------------------------------------------------
# Fast/er R-CNN
# Licensed under The MIT License [see LICENSE for details]
# Written by Bharath Hariharan
# --------------------------------------------------------

import xml.etree.ElementTree as ET
import os
import pickle
import numpy as np
import sys
import re
def parse_rec(filename):
    """ Parse a PASCAL VOC xml file """
    tree = ET.parse(filename)
    objects = []
    for obj in tree.findall('object'):
        obj_struct = {}
        obj_struct['name'] = obj.find('name').text
        obj_struct['pose'] = obj.find('pose').text
        obj_struct['truncated'] = int(obj.find('truncated').text)
        obj_struct['difficult'] = int(obj.find('difficult').text)
        bbox = obj.find('bndbox')
        obj_struct['bbox'] = [int(bbox.find('xmin').text),
                              int(bbox.find('ymin').text),
                              int(bbox.find('xmax').text),
                              int(bbox.find('ymax').text)]
        objects.append(obj_struct)

    return objects

def voc_ap(rec, prec, use_07_metric=False):
    """ ap = voc_ap(rec, prec, [use_07_metric])
    Compute VOC AP given precision and recall.
    If use_07_metric is true, uses the
    VOC 07 11 point method (default:False).
    """
    if use_07_metric:
        # 11 point metric
        ap = 0.
        for t in np.arange(0., 1.1, 0.1):
            if np.sum(rec >= t) == 0:
                p = 0
            else:
                p = np.max(prec[rec >= t])
            ap = ap + p / 11.
    else:
        # correct AP calculation
        # first append sentinel values at the end
        mrec = np.concatenate(([0.], rec, [1.]))
        mpre = np.concatenate(([0.], prec, [0.]))

        # compute the precision envelope
        for i in range(mpre.size - 1, 0, -1):
            mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])

        # to calculate area under PR curve, look for points
        # where X axis (recall) changes value
        i = np.where(mrec[1:] != mrec[:-1])[0]

        # and sum (\Delta recall) * prec
        ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
    return ap

def voc_eval(detpath,
             annopath,
             imagesetfile,
             classname,
             ovthresh=0.5,
             use_07_metric=False):
    """rec, prec, ap = voc_eval(detpath,
                                annopath,
                                imagesetfile,
                                classname,
                                [ovthresh],
                                [use_07_metric])

    Top level function that does the PASCAL VOC evaluation.

    detpath: Path to detections
        detpath.format(classname) should produce the detection results file.
    annopath: Path to annotations
        annopath.format(imagename) should be the xml annotations file.
    imagesetfile: Text file containing the list of images, one image per line.
    classname: Category name (duh)
    cachedir: Directory for caching the annotations
    [ovthresh]: Overlap threshold (default = 0.5)
    [use_07_metric]: Whether to use VOC07's 11 point AP computation
        (default False)
    """
    # assumes detections are in detpath.format(classname)
    # assumes annotations are in annopath.format(imagename)
    # assumes imagesetfile is a text file with each line an image name
    # cachedir caches the annotations in a pickle file

    # first load gt
    #if not os.path.isdir(cachedir):
    #    os.mkdir(cachedir)
    #cachefile = os.path.join(cachedir, 'annots.pkl')
    # read list of images
    with open(imagesetfile, 'r') as f:
        lines = f.readlines()
    imagenames = [x.strip() for x in lines]

    #if not os.path.isfile(cachefile):
        # load annots
    recs = {}
    for i, imagename in enumerate(imagenames):
        recs[imagename] = parse_rec(annopath.format(imagename))
        if i % 100 == 0:
            print('Reading annotation for {:d}/{:d}'.format(
                i + 1, len(imagenames)))
    # save
    #print 'Saving cached annotations to {:s}'.format(cachefile)
    #with open(cachefile, 'w') as f:
    #    cPickle.dump(recs, f)
    #else:
        # load
    #    with open(cachefile, 'r') as f:
    #        recs = cPickle.load(f)

    # extract gt objects for this class
    class_recs = {}
    npos = 0
    for imagename in imagenames:
        R = [obj for obj in recs[imagename] if obj['name'] == classname]
        bbox = np.array([x['bbox'] for x in R])
        difficult = np.array([x['difficult'] for x in R]).astype(np.bool)
        det = [False] * len(R)
        npos = npos + sum(~difficult)
        class_recs[imagename] = {'bbox': bbox,
                                 'difficult': difficult,
                                 'det': det}

    # read dets
    detfile = detpath.format(classname)
    with open(detfile, 'r') as f:
        lines = f.readlines()

    splitlines = [x.strip().split(' ') for x in lines]
    image_ids = [x[0] for x in splitlines]
    confidence = np.array([float(x[1]) for x in splitlines])
    BB = np.array([[float(z) for z in x[2:]] for x in splitlines])

    # sort by confidence
    sorted_ind = np.argsort(-confidence)
    sorted_scores = np.sort(-confidence)
    BB = BB[sorted_ind, :]
    image_ids = [image_ids[x] for x in sorted_ind]

    # go down dets and mark TPs and FPs
    nd = len(image_ids)
    tp = np.zeros(nd)
    fp = np.zeros(nd)
    for d in range(nd):
        R = class_recs[image_ids[d]]
        bb = BB[d, :].astype(float)
        ovmax = -np.inf
        BBGT = R['bbox'].astype(float)

        if BBGT.size > 0:
            # compute overlaps
            # intersection
            ixmin = np.maximum(BBGT[:, 0], bb[0])
            iymin = np.maximum(BBGT[:, 1], bb[1])
            ixmax = np.minimum(BBGT[:, 2], bb[2])
            iymax = np.minimum(BBGT[:, 3], bb[3])
            iw = np.maximum(ixmax - ixmin + 1., 0.)
            ih = np.maximum(iymax - iymin + 1., 0.)
            inters = iw * ih

            # union
            uni = ((bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) +
                   (BBGT[:, 2] - BBGT[:, 0] + 1.) *
                   (BBGT[:, 3] - BBGT[:, 1] + 1.) - inters)

            overlaps = inters / uni
            ovmax = np.max(overlaps)
            jmax = np.argmax(overlaps)

        if ovmax > ovthresh:
            if not R['difficult'][jmax]:
                if not R['det'][jmax]:
                    tp[d] = 1.
                    R['det'][jmax] = 1
                else:
                    fp[d] = 1.
        else:
            fp[d] = 1.

    # compute precision recall
    fp = np.cumsum(fp)
    tp = np.cumsum(tp)
    rec = tp / float(npos)
    # avoid divide by zero in case the first detection matches a difficult
    # ground truth
    prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
    ap = voc_ap(rec, prec, use_07_metric)

    return rec, prec, ap


if __name__ =='__main__':
    if len(sys.argv)<4:
        print('error!!!')
        print('the argv must be python 123.py [detpath] [testfile] [testname]')
    else:
        detpath=sys.argv[1]
        testfile=sys.argv[2]
        testname=sys.argv[3]
        name_id=re.compile('.*/(.*)\.jpg')
        name_xml = re.compile('(.*/).*.jpg')
        #print(re.findall(name_id,'456/123.jpg'))
        with open(testfile, 'r') as f:
            lines = f.readlines()
        f=open('123_testname.txt','w')
        for i in lines:
            temp=re.findall(name_id,i)
            f.write(temp[0]+'\n')
        f.close()
        testfilepath=os.getcwd()+'/123_testname.txt'
        temp = re.findall(name_xml, lines[0])
        temp[0] = temp[0].replace('JPEGImages','Annotation')
        annopath=temp[0]+'{}.xml'
        print(voc_eval(detpath,annopath,testfilepath,testname)[2])

你可能感兴趣的:(CV)