- 基于Multi-Agent的无人机集群体系自主作战系统设计
龙腾亚太
无人机
源自:系统工程与电子技术作者:张堃,华帅,袁斌林,杜睿怡“人工智能技术与咨询”发布摘要针对无人集群自主作战体系设计中的关键问题,提出基于Multi-Agent的无人集群自主作战系统设计方法。建立无人集群各节点的Agent模型及其推演规则;对于仿真系统模块化和通用化的需求,设计系统互操作式接口和无人集群自主作战的交互关系;开展无人集群系统仿真推演验证。仿真结果表明,所提设计方案不仅能够有效开展并完成
- 智能工厂的设计软件 应用场景的一个例子: 为AI聊天工具添加一个知识系统 之19 再次重建 之4 职业能力程度(成熟度&进化度:集成&演进)评价 CSR 祖传代码:AI操作系统 之2
一水鉴天
人工语言智能制造软件智能人工智能
本文问题通过纲/目两者并举使能二者并进的偏序序积-斜成线(有秩-纲举目张),左边的行矢--横成行(有序-科目),顶上的列簇--竖成列(有线性-纲领):语法类型Type(智能化&公理化=自动化,有序&线性=简单链chains),语用单调概念格规范图(有序列表lists智能化),语义一阶理论格规则公式(线性树trees公理化)。整个构成一种非常特别的矩阵(有秩有序有线的一个稠密矩阵)。GPT理解上有点
- day6手机摄影社区,可以去苹果摄影社区学习拍摄技巧
今天会营业
手机摄影摄影
逛自己手机的社区:即××(手机牌子)摄影社区拍照时防止抖动可以控制自己的呼吸,不要大喘气拍一张照片后,如何简单的用手机修图?HDR模式就是让高光部分和阴影部分更协调(拍风紧时可以打开,拍人时不要打开)例如上图中如果没有使用HDR模式,天空可能会更亮山可能会更暗,打开HDR后天空会变暗,山会变亮些。拍照要四平八稳,即横是横,竖是竖线条不要歪七扭八的专业模式中:ISO代表感光度,感光度越高照片越亮照片
- mongodb explain分析
记录下mongodbexplain信息,使用的mongodb版本为4.0.9项目关联查询了两张表用户表与用户登录日志表,分别为user_info与user_login_info,脚本如下:db.t_user_info.explain('allPlansExecution').aggregate([{$lookup:{from:"t_user_login_info",localField:"user
- 分表数据通过canal同步数据
javacanal数据同步
项目使用的canal版本:1.1.4,使用rocketMQ进行消费之前项目中一直是单库单表进行数据同步,后面遇到分表数据也需要进行同步,数据表是用户登录数据:user_login_info_0、user_login_info_1...共分了10张表,但不想配置多个表与topic,想有一种正则的写法只配置一个就行,需要重点关注canal.instance.filter.regex与canal.mq.
- 菜鸟开发之多表联合增删改
苏白辛
数据库mysqljava
多表联合处理数据在开发过程中必不可少,占比不低于逻辑处理,菜菜鸟先以此记录简单的联查处理,后则不断补充,尤其数据表查询......目录一、多表联查新增1、一张表数据插入到另一张表1)新表存在2)新表不存在3)目标表字段多于源表4)IN子句可用于向另一个数据库Backup.mdb中拷贝表2、多表数据插入到另一张表1)直接新增查询结果数据2)查询结果不直接新增二、多表联查删除1、EXISTS2、IN3
- 【MySQL】六,sql_model的合理设置
zhcf
MySQLmysqlsql数据库
宽松模式和严格模式宽松模式如果设置的是宽松模式,那么我们在插入数据的时候,即使是给了一个错误的数据,那么可能也不会报错。举例:某张表的name字段为char(10),插入数据的时候,如果name字段的数据长度超过了10,如‘1234567890abc’,那么不会报错,mysql会自行处理,截取前10个字符存储,这就是宽松模式。应用场景:通过设置sql_mode为宽松模式,来保证大多数的SQL符合标
- oracle行列级权限控制(VPD)
天选之子123
ORACLEoracle数据库
oracle行列级权限控制(VPD)一、背景在数据访问中一般的访问权限控制是通过创建视图实现的,基于某个基础表创建不同的视图,将视图的查询权限赋予特定的数据查询方,使得不同的用户只能访问到特定的数据。那么有没有办法让不同的用户访问同一张表的时候,只能看到自己权限范围内的数据,不通过视图实现,显然是有的。虚拟专用数据库(VPD)指的是,通过在数据库里进行配置,从而让不同的用户只能查看某个表里的部分数
- 深度学习——模型过拟合和欠拟合的原因及解决方法
发呆小天才O.o
深度学习深度学习人工智能
一、定义1.过拟合(Overfitting)过拟合是指模型在训练数据上表现非常好,但在测试数据或新的数据上表现很差的现象。模型过度地学习了训练数据中的细节和噪声,以至于它无法很好地泛化到未见过的数据。例如,在一个图像分类任务中,过拟合的模型可能对训练集中的每一张图像的特定细节(如某张猫图片背景中的一个小污点)都学习得过于精细,以至于在测试集中,只要图像背景稍有不同,就无法正确分类。2.欠拟合(Un
- 组件封装 - 骨架屏组件
hmxs_hmbb
Vue组件封装htmlvue.js前端
骨架屏组件的主要作用就是用来,当后端的数据还没有返回的时候;页面的数据还是空白的,当后端数据加载完成之后.现在用户就会看见一个效果就是"闪屏"效果,原本这个地方是空白的;突然就出现内容了,这样用户的体验感就不太好.那么解决方案其实有很多,如:1.放一张图片上去,当数据返回之后;让图片隐藏,显示数据2.设置一个loading效果3.使用骨架屏......那么现在我们就来聊一聊,如何去封装一个骨架屏组
- 【opencv】一文看懂opencv图像坐标系
Azanulbizar
opencvopencv计算机视觉人工智能
1坐标系的定义坐标系原点为图片左上角点;X轴水平向右,y轴垂直向下列cols沿水平方向变化,此方向上定义图像宽度width;行rows沿垂直方向变化,此方向上定义图像高度height将上述元素画在一张图上,如下图所示2坐标的遍历访问2.1常见结构的坐标定义cv::Mat(introws,intcols,inttype)入参顺序先行后列,即图像的高和宽,如画一张高200像素、宽300像素的图像//创
- 使用YOLOv8训练一个无人机(UAV)检测模型,深度学习目标检测中_并开发一个完整的系统 yolov8来训练无人机数据集并检测无人机
QQ_1309399183
无人机类YOLO无人机深度学习
使用YOLOv8训练一个无人机(UAV)检测模型,深度学习目标检测中_并开发一个完整的系统yolov8来训练无人机数据集并检测无人机无人机数据集,yolo格式种类为uav,一共近5w张图片,如何用yolov8代码训练无人机检测数据集文章目录以下文章及内容仅供参考。1.环境部署2.数据预处理数据集准备划分数据集3.模型定义4.训练模型5.评估模型6.结果分析与可视化7.集成与部署PyQt6GUI(`
- 如何把图片或者图片地址存到 MySQL 数据库中以及如何将这些图片数据通过 JSP 显示在网页中
m0_74824687
面试学习路线阿里巴巴数据库mysqljava
如何优雅地管理图片:从MySQL数据库存储到JSP展示的全流程解析在互联网时代,一张引人入胜的图片往往能为网站带来巨大的流量。而作为开发者的我们,如何高效地管理和展示这些图片资源则成为了一项重要的技术挑战。今天,我们就一起来探讨一下,如何通过MySQL数据库存储图片(或其地址),并在JSP页面上实现美观大方的展示。一、存储策略选择图片存储方式存储图片有两种常见的方法:直接存储图片文件和存储图片路径
- 在PyTorch框架上训练ImageNet时,Dataloader加载速度慢怎么解决?
cda2024
pytorch人工智能python
在深度学习领域,PyTorch因其灵活性和易用性而受到广泛欢迎。然而,在实际应用中,特别是在处理大规模数据集如ImageNet时,Dataloader的加载速度往往成为瓶颈。本文将深入探讨这一问题,并提供多种解决方案,帮助你在PyTorch框架上高效地训练ImageNet。1.问题背景ImageNet是一个包含超过1400万张图像的大规模数据集,被广泛用于图像分类任务的研究。在PyTorch中,D
- 表的创建(列的类型定义)
Chasing追~
mysql数据库学习数据库c++学习mysql
数据表操作表是一种很重要的数据库对象,是组成数据库的基本元素,由若干个字段组成,主要用来实现存储数据记录。表的操作包括创建表、查询表、修改表和删除表。如何创建一张简单表?ID(class_id)名称(class_name)班主任(class_teacher)101六年级一班马老师102六年级二班潘老师createdatabaseschool;useschool;createtableclass(c
- vue el-upload 上传图片列表校验不通过后多删除了一张图片
*且听风吟
#Vue2.xvue.jsjavascript前端
问题最近在使用element-ui的el-upload组件上传图片列表时,发现当上传的图片校验不通过时,会将上一张已经上传成功的图片删除了。场景已经上传了一张图片1,再上传另一张图片2,如果当前这张图片2校验不通过,会提示失败并且删除当前图片2,同时,也会将上一张已经上传成功的图片1也删除。组件主要代码:上传支持上传图片,单文件上传大小限制10MB,最多上传10张附件---------------
- TensorFlow 的基本概念和使用场景
秃头小饼干
tensorflow人工智能python
一、基本概念(一)张量(Tensor)张量是TensorFlow中最基本的数据结构,它可以看作是多维数组或列表。零阶张量表示标量(单个数字),一阶张量表示向量(一维数组),二阶张量表示矩阵(二维数组),而三阶及以上的张量则是更高维度的数组。例如,在图像识别任务中,一张彩色图像可以表示为一个三阶张量,三个维度分别对应图像的高度、宽度和颜色通道(红、绿、蓝)。张量是计算图中数据流动的载体,各种操作都是
- 模拟法练习C++ 1
c++初学者ABC
C++c++开发语言算法
有错请指出!对于模拟法,百度定义是其实,没有这么麻烦,也就是题目是什么,我们就怎么写,也可以说它是不是算法的算法,最好把代码模块化特点:1.题目简单,代码量很大2.不好找错误3.在比赛中经常考4.代码灵活下面是几道例题1.扑克游戏题目描述三张扑克牌比大小,每个人从扑克牌中抽取三张牌,然后进行比较,规则如下:点数规则:A为最小,K为最大。A记为1点,JQK分别记为11点、12点、13点。比较规则:最
- 浏览器中实现3D全景浏览
snawy
three.js全景图WebGL
如果你用过网页版的百度地图,你大概3D全景图浏览是一种怎样的酷炫体验:在一个点可以360度环顾周围的建筑、景色,当然也可以四周移动,就像身临其境。科普全景图共分为三种:①球面全景图利用一张全景图围成一个球,自身位置位于球体内。由于图片是矩形,所以最上和最下的缝合处很明显就能够看得出来。球面全景图是最接近人眼的构建模式,若利用多个立面构建,拼接方法繁琐,性能消耗高。因此,本文介绍的是上述通过一张全景
- 使用YOLOv8训练一个无人机(UAV)检测模型,深度学习目标检测中_并开发一个完整的系统 yolov8来训练无人机数据集并检测无人机
QQ_767172261
无人及视角YOLO无人机深度学习
使用YOLOv8训练一个无人机(UAV)检测模型,深度学习目标检测中_并开发一个完整的系统yolov8来训练无人机数据集并检测无人机无人机数据集,yolo格式种类为uav,一共近5w张图片,如何用yolov8代码训练无人机检测数据集文章目录以下文章及内容仅供参考。1.环境部署2.数据预处理数据集准备划分数据集3.模型定义4.训练模型5.评估模型6.结果分析与可视化7.集成与部署PyQt6GUI(`
- 网页性能优化之懒加载与预加载:概念、原理、实现及对比
不在··
javascript前端
1.什么是懒加载?懒加载也就是延迟加载。当访问一个页面的时候,先把img元素或是其他元素的背景图片路径替换成一张大小为1*1px图片的路径(这样就只需请求一次,俗称占位图),只有当图片出现在浏览器的可视区域内时,才设置图片正真的路径,让图片显示出来。这就是图片懒加载。2.为什么要使用懒加载?很多页面,内容很丰富,页面很长,图片较多。比如说各种商城页面。这些页面图片数量多,而且比较大,少说百来K,多
- 摄影三要素
长安er
光电摄影摄影摄影三要素光圈快门ISO
在摄影的奇妙世界里,有三个关键要素掌控着每一张照片的最终效果,它们就是光圈、快门速度和感光度,被统称为摄影三要素。一、光圈:光线的闸门(一)光圈的定义与原理光圈就像是相机镜头中的一扇可调节大小的窗户,它控制着进入相机的光线量。光圈值通常用f数来表示,比如f/1.4、f/2.8、f/5.6等。这里的数字越小,光圈孔径越大,允许进入相机的光线就越多;反之,数字越大,光圈孔径越小,进入的光线也就越少。(
- 自然语言处理(NLP)-总览图学习
汤姆和佩琦
NLP自然语言处理学习人工智能
文章目录自然语言处理(NLP)-总览图学习1.一张总览图的学习1.语音学(Phonology)2.形态学(Morphology)3.句法学(Syntax)4.语义学(Semantics)5.推理(Reasoning)小结自然语言处理(NLP)-总览图学习转自《Python自然语言处理第二版》1.一张总览图的学习这张图片展示了一个自然语言处理的流程模型,涵盖了从语音分析到应用推理和执行的多个阶段,每
- 星露谷模组开发教程#8 自定义武器
c#
首发于Enaium的个人博客添加武器还是比较简单的,只需要在Data/Weapons中添加一个新的武器数据即可。这里做一张16x16格式为png的图。if(e.Name.IsEquivalentTo("Data/Weapons")){e.Edit(assets=>{vardict=assets.AsDictionary();dict.Data["Awesome_TheLastSword"]=new
- 星露谷模组开发教程#7 自定义机器
c#
首发于Enaium的个人博客添加大型工艺品机器也算是大型工艺品,所以我们需要先添加它的大型工艺品。这里做一张16x32格式为png的图。if(e.Name.IsEquivalentTo("Data/BigCraftables")){e.Edit(assets=>{vardict=assets.AsDictionary();dict.Data["Awesome_Orearium"]=newBigCr
- 网络传输中的三张表,MAC地址表、ARP缓存表以及路由表
h490516509
网络编程
一:MAC地址表详解说到MAC地址表,就不得不说一下交换机的工作原理了,因为交换机是根据MAC地址表转发数据帧的。在交换机中有一张记录着局域网主机MAC地址与交换机接口的对应关系的表,交换机就是根据这张表负责将数据帧传输到指定的主机上的。交换机的工作原理交换机在接收到数据帧以后,首先、会记录数据帧中的源MAC地址和对应的接口到MAC表中,接着、会检查自己的MAC表中是否有数据帧中目标MAC地址的信
- 谁在告谁?移动专利混战图
di0808
移动领域激战正酣,同样是没有永远的朋友,只有永远的利益。苹果刚刚起诉三星的Galaxy手机和平板电脑山寨了苹果的产品,而此前两家并没有过节。再比如微软和亚马逊以及HTC之间的授权协议争端。移动领域的争端如此之多,以至于看客无法分辨到底谁在告谁,谁是谁的敌人,谁是谁的朋友。于是有人为了让人们吧这纷纷扰扰看得清清楚楚明明白白特意制作了一张移动专利诉讼图:几点说明:仅包括专利相关诉讼,不包括那些只围绕商
- 路由器表 ARP表 转发表(到工作流,未完待续)
PDYJ
计网1024程序员节
原文章https://blog.csdn.net/u010843421/article/details/82026427全文概要计算机网络中一个关键步骤在于通信路径上不同节点对于流经本节点的数据包转发,常见的交换设备主要是交换机(第二层、三层)和路由器(第三层),在实际运行时,它们各自维护一些表结构帮助完成数据包的正确寻址与转发,本文详细介绍了三张至关重要的表:转发表、ARP表与路由表的在网络数据
- YOLOV11改进1-检测头篇
~啥也不会~
YOLO人工智能目标检测神经网络深度学习
文章目录前言一、YAML修改二、模型训练1.数据集准备2.环境准备3.训练3.1原结构训练3.2更改后的模型三.效果对比1.原始结构2.修改后的结果3.详细对比总结前言 目标检测领域里,小目标一直是一个难点问题,虽然我们可以用YOLO+SAHI的方式进行滑动窗口推理以提升准确率,但是他的耗时会线性增强,毕竟一张大图会被切成很多小图去推理,所以在很多场景下无法得到应用。这里,我们从探测头入手,
- Rasa的工作流程
不会编程的程序猿ᅟ
rasa
Rasa的工作流程分为两个主要部分:NLU(自然语言理解)和Core(对话管理)。整个流程包括从用户输入到最终响应的多个步骤,下面是详细的工作流程解析:1.用户输入用户通过聊天界面(如微信、Telegram、Slack或Web前端)发送自然语言消息,例如:"我想预订一张明天去北京的火车票"2.自然语言理解(NLU)Rasa的NLU模块解析用户输入,提取意图和实体。2.1意图识别NLU模块会识别用户
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_